Advertisement

Bulletin of Materials Science

, Volume 27, Issue 3, pp 281–287 | Cite as

Comparative investigation on the effect of alkaline earth oxides on the intensity of absorption bands due to Cu2+, Mn3+ and Cr3+ ions in ternary silicate glasses

  • S. P. Singh
  • Aman
  • Anal Tarafder
Article

Abstract

Absorption characteristics of Cu2+, Mn3+ and Cr3+ ions in ternary silicate (20Na2O·10RO·70SiO2, where R=Ca, Sr, Ba) glasses were investigated. The intensities of absorption bands due to Cu2+ ion was found to increase with increasing ionic radii of the alkaline earth ions whereas it was found to decrease in case of Mn3+ and Cr3+ ions with increasing ionic radii of the alkaline earth ions. The results were discussed in the light of relation between linear extinction coefficients of these ions and coulombic force of alkaline earth ions. The change in intensities of Cu2+, Mn3+ and Cr3+ ion is attributed due to change in silicate glass compositions.

Keywords

Comparison absorption intensities copper manganese chromium ions silicate glasses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bamford C R 1962Phys. Chem. Glasses 36 189Google Scholar
  2. Banerjee S and Paul A 1974J. Am. Ceram. Soc. 57 286CrossRefGoogle Scholar
  3. Bates T 1962Modern aspect of vitreous state (ed.) J D Mackenzi (London: Butterworths)2 p. 239Google Scholar
  4. Bhatnagar S S 1939Nature 143 559Google Scholar
  5. Bhatnagar S S, Khosla B D and Chand R 1940J. Indian Ceram. Soc. 17 515Google Scholar
  6. Cable M and Xiang Z D 1989aPhys. Chem. Glasses 30 237Google Scholar
  7. Cable M and Xiang Z D 1989bGlastech. Ber. 62 382Google Scholar
  8. Dwivedi R N and Nath P 1980Trans. Indian Ceram. Soc. 39 23Google Scholar
  9. Haddon J C, Rogers E A and Williums D J 1969J. Am. Ceram. Soc. 1 52CrossRefGoogle Scholar
  10. Ilse F E and Hartmann H 1951Zeit. Phys. Chem. 197 239Google Scholar
  11. Johnston W D and Chelko A 1966J. Am. Ceram. Soc. 49 562CrossRefGoogle Scholar
  12. Kumar A and Singh S P 1989Trans. Ind. Ceram. Soc. 48 39Google Scholar
  13. Kumar S 1959Cent. Glass Ceram. Res. Inst. Bull. 63 99Google Scholar
  14. Kumar S and Sen P 1960Phys. Chem. Glasses 1 175Google Scholar
  15. Lee V J H and Bruckner R 1984Glastech. Ber. 57 30Google Scholar
  16. Nath P, Paul A and Douglas R W 1965Phys. Chem. Glasses 6 203Google Scholar
  17. Paul A and Lahiri D 1966J. Am. Ceram. Soc. 49 565CrossRefGoogle Scholar
  18. Ram A and Prasad S N 1962Advances in glass technology (New York: Plenum Press) p. 256Google Scholar
  19. Ram A, Kumar S and Nath P 1957Cent. Glass Ceram. Res. Inst. Bull. 4 182Google Scholar
  20. Seok S I, Kim M S and Suh T S 2002J. Am. Ceram. Soc. 85 1888CrossRefGoogle Scholar
  21. Singh R S and Singh S P 1998Phys. Chem. Glasses 39 140Google Scholar
  22. Singh S P and Kumar A 1995J. Mater. Sci. 30 2999CrossRefGoogle Scholar
  23. Singh S P, Prasad G and Nath P 1978aCent. Glass Ceram. Res. Inst. Bull. 25 38Google Scholar
  24. Singh S P, Prasad G and Nath P 1978bJ. Am. Ceram. Soc. 61 377CrossRefGoogle Scholar
  25. Weyl W A 1967Coloured glasses (Sheffield, UK: Society of Glass Technology) p. 161Google Scholar

Copyright information

© Indian Academy of Sciences 2004

Authors and Affiliations

  • S. P. Singh
    • 1
  • Aman
    • 1
  • Anal Tarafder
    • 1
  1. 1.Department of Ceramic Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations