Skip to main content
Log in

Performance of density functional theory methods to describe intramolecular hydrogen shifts

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The performance of three exchange and correlation density functionals, LDA, BLYP and B3LYP, with four basis sets is tested in three intramolecular hydrogen shift reactions. The best reaction and activation energies come from the hybrid functional B3LYP with triple-ζ basis sets, when they are compared with high-level post-Hartree-Fock results from the literature. For a fixed molecular geometry, the electrophilic Fukui function is computed from a finite difference approximation. Fukui function shows a small dependence with both the exchange and correlation functional and the basis set. Evolution of the Fukui function along the reaction path describes important changes in the basic sites of the corresponding molecules. These results are in agreement with the chemical behavior of those species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. March J 1992Advanced organic chemistry: Reactions mechanisms and structure 4th edn (New York: Wiley)

    Google Scholar 

  2. Morrison R T and Boyd R N 1987Organic chemistry 5th edn (Boston: Allyn and Bacon)

    Google Scholar 

  3. Cisneros G A, Liu H, Zhang Y and Yang W 2003J. Am. Chem. Soc. 125 498

    Article  CAS  Google Scholar 

  4. Beak P 1977Acc. Chem. Res. 10 186

    Article  CAS  Google Scholar 

  5. Rak J, Skurski, Simons J and Gutowski M 2001J. Am. Chem. Soc. 123 11695; Rodriquez C, Cunje A, Shoeib T, Chu I K, Hopkinson A C and Siu K W M 2000J. Phys. Chem. A104 5023; Cardenas-Jirón G I and Toro-Labbe A 1997J. Mol. Struct. (Theochem)390 79; Cardenas-Jirón G I, Lahsen J and Toro-Labbe A 1995J. Phys. Chem. 99 5325; Cioslowski J 1991J. Am. Chem. Soc. 113 6756; Wong M W, Wiberg K B and Frisch M J 1992J. Am. Chem. Soc. 114 1645; Tsuchiya Y, Tamura T, Fuji M and Ito M 1998J. Phys. Chem. 92 1760; Beak P, Covington J B, Smith S G, White J M and Zeigler J M 1980J. Org. Chem. 45 1354; Heinrich N, Koch W, Frenking G and Schwarz H 1986J. Am. Chem. Soc. 108 593

    Article  CAS  Google Scholar 

  6. Durant J L 1996Chem. Phys. Lett. 256 595

    Article  CAS  Google Scholar 

  7. Torrent M, Duran M and Sola M 1996J. Mol. Struct. (Theochem) 362 163

    Article  CAS  Google Scholar 

  8. Poater M, Sola M, Duran M and Robles J 2002Phys. Chem. Chem. Phys. 4 722

    Article  CAS  Google Scholar 

  9. Baker M, Muir M and Andzelm J 1995J. Chem. Phys. 102 2063

    Article  CAS  Google Scholar 

  10. Sola M and Toro-Labbe A 1999J. Phys. Chem. A103 8847; Bulat F and Toro-Labbe A 2003J. Chem. Phys. 107 3987

    Google Scholar 

  11. Pérez P and Toro-Labbe A 2000J. Phys. Chem. A104 1557

    Google Scholar 

  12. Parr R G and Yang W 1989Density functional theory of atoms and molecules (New York: Oxford University Press)

    Google Scholar 

  13. Parr R G and Yang W 1984J. Am. Chem. Soc. 106 4049

    Article  CAS  Google Scholar 

  14. Bernholdt D Eet al 1995Int. J. Quantum Chem. Symp. 29 475

    Article  CAS  Google Scholar 

  15. Vosko S H, Wilk L and Nusair M 1980Can. J. Phys. 58 1200

    Article  CAS  Google Scholar 

  16. Becke A D 1988Phys. Rev. A88 3098

    Google Scholar 

  17. Lee C, Yang W and Par R G 1988Phys. Rev. B37 785

    Google Scholar 

  18. Becke A D 1993J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  19. Jalbout A F 2002Mol. Phys. 24 3785

    Article  CAS  Google Scholar 

  20. Cubbage J W and Jenks W S 2001J. Phys. Chem. A105 10588

    Google Scholar 

  21. Alkorta I and Elguero J 2004Tetrahedron Lett. 45 4127

    Article  CAS  Google Scholar 

  22. Barone V and Adamo C 1996J. Chem. Phys. 105 11007; Zhang Q, Bell R and Truong T N 1995J. Chem. Phys. 99 592; Jursic B S 1997J. Mol. Struct. (Theochem) 417 89; Thummel H T and Bauschlicher C W 1997J. Chem. Phys. 101 1188; Bach R D, Glukhovtsev M N and Gonzalez C 1998J. Am. Chem. Soc. 120 9902; Rice B M, Pai S V and Chabalowski C F 1998J. Phys. Chem. A102 6950; Tucker J M and Standard M 1998J. Mol. Struct. (Theochem)431 193; Jursic B S 1998J. Mol. Struct. (Theochem)430 17; Yoshizawa K, Shiota Y, Kang S and Yamabe T 1997Organometallics 16 5058

    Article  CAS  Google Scholar 

  23. Langenaeker W, De Proft F and Geerlings P 1996J. Mol. Struct. (Theochem) 362 175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Cedillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Rivas, N., Cedillo, A. Performance of density functional theory methods to describe intramolecular hydrogen shifts. J Chem Sci 117, 555–560 (2005). https://doi.org/10.1007/BF02708362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708362

Keywords

Navigation