Advertisement

Journal of Chemical Sciences

, Volume 117, Issue 5, pp 477–483 | Cite as

Dynamic behavior of chemical reactivity indices in density functional theory: A Bohn-Oppenheimer quantum molecular dynamics study

  • Shubin Liu
Article

Abstract

Dynamic behaviors of chemical concepts in density functional theory such as frontier orbitals (HOMO/LUMO), chemical potential, hardness, and electrophilicity index have been investigated in this work in the context of Bohn-Oppenheimer quantum molecular dynamics in association with molecular conformation changes. Exemplary molecular systems like CH 5 + , Cl (H2O)30 and Ca2+ (H2O)15 are studied at 300 K in the gas phase, demonstrating that HOMO is more dynamic than LUMO, chemical potential and hardness often fluctuate concurrently. It is argued that DFT concepts and indices may serve as a good framework to understand molecular conformation changes as well as other dynamic phenomena.

Keywords

Chemical potential hardness electrophilicity index dynamics HOMO LUMO QMD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parr R G and Yang W 1989Density functional theory of atoms and molecules (New York: Oxford University Press)Google Scholar
  2. 2.
    Geerlings P, De Proft F and Langenaeker W 2003Chem. Rev. 103 1793CrossRefGoogle Scholar
  3. 3.
    Parr R G, Von Szentpaly L and Liu S 1999J. Am. Chem. Soc. 121 1922CrossRefGoogle Scholar
  4. 4.
    De Proft F and Geerlings P 2001Chem. Rev. 101 1451CrossRefGoogle Scholar
  5. 5.
    Chattaraj PK and Roy D RJ. Phys. Chem. A (in press)Google Scholar
  6. 6.
    Chattaraj P K 1992Int. J. Quantum Chem. 41 845CrossRefGoogle Scholar
  7. 7.
    Chattaraj P K and Nath S 1994Int. J. Quantum Chem. 49 705CrossRefGoogle Scholar
  8. 8.
    Chattaraj P K and Nath S 1994Chem. Phys. Lett. 217 342CrossRefGoogle Scholar
  9. 9.
    Chattaraj P K and Sengupta S 1996J. Phys. Chem. 100 16126CrossRefGoogle Scholar
  10. 10.
    Chattaraj P K and Sengupta S 1997J. Phys. Chem. A101 7893Google Scholar
  11. 11.
    Chattaraj P K and Maiti B 2001J. Phys. Chem. 105 169Google Scholar
  12. 12.
    Chattaraj P K and Maiti B 2004J. Phys. Chem. 108 658Google Scholar
  13. 13.
    Vuilleumier R and Sprik M 2001J. Chem. Phys. 115 3454CrossRefGoogle Scholar
  14. 14.
    Car R and Parinello M 1985Phys. Rev. Lett. 55 2471CrossRefGoogle Scholar
  15. 15.
    York D M and Yang W 1996J. Chem. Phys. 104 159CrossRefGoogle Scholar
  16. 16.
    Bolton K, Hase W L and Peshlherbe G H 1998Modern methods for multidimensional dynamics computation in chemistry (ed.) D L Thompson (Singapore: World Scientific) p. 143Google Scholar
  17. 17.
    Aprà Eet al 2005NWChem. A computational chemistry package for parallel computers version 47, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USAGoogle Scholar
  18. 18.
    Kendall R Aet al 2000Comput. Phys. Commun. 128 260CrossRefGoogle Scholar
  19. 19.
    Parr R G, Donnelly R A, Levy M and Palke W E 1978J. Chem. Phys. 68 3801CrossRefGoogle Scholar
  20. 20.
    Mulliken R S 1934J. Chem. Phys. 2 782CrossRefGoogle Scholar
  21. 21.
    Parr R G and Pearson RG 1983J. Am. Chem. Soc. 105 7512CrossRefGoogle Scholar
  22. 22.
    Koopmans T A 1933Physica 1 104CrossRefGoogle Scholar
  23. 23.
    Parr R G, Von Szentpaly L and Liu S 1999J. Am. Chem. Soc. 121 1922CrossRefGoogle Scholar
  24. 24.
    Gerlich D 2005Chem. Phys. Phys. Chem. 7 1583CrossRefGoogle Scholar
  25. 25.
    Brown A, Mccoy A B, Braams B J, Jin Z and Bowman J M 2004J. Chem. Phys. 121 4105CrossRefGoogle Scholar
  26. 26.
    Mccoy A B, Braams B J, Brown A, Huang X C, Jin Z and Bowman J M 2004J. Phys. Chem. A108 4991Google Scholar
  27. 27.
    Schreiner P R 2000Angew. Chem. Int. Ed. 39 3239CrossRefGoogle Scholar
  28. 28.
    White E T, Tang J and Oka T 1999Science 284 135CrossRefGoogle Scholar
  29. 29.
    Herce D H, Perera L, Darden T A and Sagui C 2005J. Chem. Phys. 122 024513CrossRefGoogle Scholar
  30. 30.
    Markovich G, Perera L, Berkowitz M L and Cheshnovsky O 1996J. Chem. Phys. 105 2675CrossRefGoogle Scholar
  31. 31.
    Shevkunov S V, Lukyanov SI, Leyssale JM and Millot C 2005Chem. Phys. 310 97CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Shubin Liu
    • 1
  1. 1.Department of Academic Technology & NetworksUniversity of North CarolinaChapel HillUSA

Personalised recommendations