Journal of Chemical Sciences

, Volume 115, Issue 5–6, pp 637–647 | Cite as

Aromaticity in benzene-like rings — An experimental electron density investigation

  • Anupama Ranganathan
  • G. U. Kulkarni


An experimental charge density study has been carried out on perylene based on X-ray diffraction measurements at 130 K. The electron density and its associated properties have been evaluated at the bond and the ring critical points for the naphthalene residues as well as for the central ring. The variation of the Laplacian along the axis, above and below the ring plane, is found to be symmetric for the central ring while for the naphthalene rings, the Laplacian values are enhanced under the bow-shaped region. A plot of the Laplacian versus density evaluated at various points along the axis above the ring plane, shows a steep variation in the case of the central ring implying that theπ-density is smeared out compared to that over the naphthalene rings. Similar data extracted from a quinoid ring and a regular phenyl ring (both based on earlier reports from this laboratory) exhibit increasingly shallower trends and indicate, by contrast, that the central ring of perylene is much less aromatic.


Perylene aromaticity experimental electron density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gomes J A N F and Mallion R B 2001Chem. Rev. 101 349CrossRefGoogle Scholar
  2. 2.
    Mitchell R H 2001Chem. Rev. 101 1301CrossRefGoogle Scholar
  3. 3.
    Julg A and Francois P H 1967Theor. Chem. Acta 7 249; Bird C W 1985Tetrahedron 41 1409; Schleyer P v R, Freeman P K, Jiao H and Goldfuss B 1995Angew. Chem., Int. Ed. Engl. 34 337CrossRefGoogle Scholar
  4. 4.
    Dewar M J S and de Llano C 1969J. Am. Chem. Soc. 91 789CrossRefGoogle Scholar
  5. 5.
    Klein D J 1989Pure Appl. Chem. 61 2107Google Scholar
  6. 6.
    Haigh C W and Mallion R B 1989Croat. Chem. Acta 62 1Google Scholar
  7. 7.
    Koritsanszky T S and Coppens P 2001Chem. Rev. 101 1583CrossRefGoogle Scholar
  8. 8.
    Howard S T and Krygowski T M 1997Can. J. Chem. 75 1174CrossRefGoogle Scholar
  9. 9.
    Ranganathan A and Kulkarni G U 2002J. Phys. Chem. A106 7813Google Scholar
  10. 10.
    Farges J-P 1994 InOrganic conductors: Fundamentals and applications (New York: Marcel Dekker)Google Scholar
  11. 11.
    Camerman A and Trotter J 1964Proc. R. Soc. London A279 129Google Scholar
  12. 12.
    Gopalan R S, Kulkarni G U and Rao C N R 2001New J. Chem. 25 1108CrossRefGoogle Scholar
  13. 13.
    Gopalan R S, Kulkarni G U, Subramanian E and Renganayaki S 2000J. Mol. Struct. 524 169CrossRefGoogle Scholar
  14. 14.
    Tanaka J 1963Bull. Chem. Soc. Jpn. 36 1237CrossRefGoogle Scholar
  15. 15.
    Hansen N K and Coppens P 1978Acta Crystallogr. A34 909Google Scholar
  16. 16.
    Allen F H, Kennard O, Watson D G, Brammer L, Orpen A G and Taylor R 1987J. Chem. Soc., Perkin Trans. 2 S1Google Scholar
  17. 17.
    Koritsanszky T, Howard S T, Richter T, Mallinson P R, Su Z and Hansen N K 1995 XD, A computer program package for multipole refinement and analysis of charge densities from diffraction data, Cardiff, Glasgow, Buffalo, Nancy, BerlinGoogle Scholar
  18. 18.
    Hirshfeld F L 1976Acta Crystallogr. A32 239Google Scholar
  19. 19.
    Dewar M J S and Schmeising H N 1959Tetrahedron 5 166CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  1. 1.Chemistry and Physics of Materials UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations