Journal of Chemical Sciences

, Volume 115, Issue 5–6, pp 525–532 | Cite as

Following the crystallisation of Bi2Mo2O9 catalyst by combined XRD/QuEXAFS

  • Andrew M. Beale
  • Gopinathan Sankar


The formation ofβ-phase Bi2Mo2O9 catalyst from a precursor precipitate has been studied using thein situ combined XRD/QuEXAFS technique and DSC during calcination. Accordingly the precursor was observed to undergo a number of changes in both the molybdenum (VI) coordination and long-range ordering during this heating. Initially the two other forms of bismuth molybdate (α-andγ-phases) were observed to form from the poorly crystalline precursor at about 230°C, however, theβ-phase eventually crystallised after prolonged heating at 560°C.


Bi2Mo2O9 catalyst XRD/QuEXAFS long-range 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grasselli R K and Burrington J D 1981Adv. Catal. 30 133CrossRefGoogle Scholar
  2. 2.
    MoroOka Y and Ueda W 1994Adv. Catal. 40 233CrossRefGoogle Scholar
  3. 3.
    Theobald F, Laarif A and Hewat A W 1985Mater. Res. Bull. 20 653CrossRefGoogle Scholar
  4. 4.
    Chen H and Sleight A W 1986J. Solid State Chem. 63 70CrossRefGoogle Scholar
  5. 5.
    Teller R G, Brazdil J F and Grasselli R K 1984Acta Crystallogr. C40 2001Google Scholar
  6. 6.
    Buttrey D J, Jefferson D A and Thomas J M 1986Philos. Mag. 53 897CrossRefGoogle Scholar
  7. 7.
    Thomas J M and Thomas W J 1997Principles and practice of heterogeneous catalysts (New York: VCH)Google Scholar
  8. 8.
    Aurivillius B 1951Ark. Kemi. 2 519Google Scholar
  9. 9.
    Antonio M R, Teller R G, Sandstrom D R, Mehicic M and Brazdil JF 1988J. Phys. Chem. 92 2939CrossRefGoogle Scholar
  10. 10.
    Hearne G W and Adams M 1948US Patent 2,451,485Google Scholar
  11. 11.
    Standard Oil Co 1964GB Patent 965,173Google Scholar
  12. 12.
    McClellan W R and Stiles A B 1972US Patent 3,678,139Google Scholar
  13. 13.
    Grasselli R K, Suresh D D and Friedrich M S 1984US Patent 4,424,141Google Scholar
  14. 14.
    Sasaki Y, Mori K and Moriya K 1990EP Patent 0,389,255Google Scholar
  15. 15.
    Sasaki Y, Mori K and Moriya K 1990EP Patent 0,383,598Google Scholar
  16. 16.
    Kope J, Kripylo P, Hohlstamm I, Hoepfner R, Knaack K E and Mai H G 1993DE Patent 4,124,666Google Scholar
  17. 17.
    Izumi J, Watanabe S and Yoshioka H 1997EP Patent 0,799,642Google Scholar
  18. 18.
    Schirmann J P, Descat G, Etienne E, Pham C and Simon M 2000FR Patent 278,251,2Google Scholar
  19. 19.
    Rao C N R and Gopalakrishnan J 1987Acc. Chem. Res. 20 228CrossRefGoogle Scholar
  20. 20.
    Snyder T P and Hill C G 1991J. Catal. 132 536CrossRefGoogle Scholar
  21. 21.
    Beale A M and Sankar G 2003Chem. Mater. 15 146CrossRefGoogle Scholar
  22. 22.
    Sankar G, Wright P A, Natarajan S, Thomas J M, Greaves G N, Dent A J, Dobson B R, Ramsdale C A and Jones R H 1993J. Phys. Chem. 97 9550CrossRefGoogle Scholar
  23. 23.
    Sankar G and Thomas J M 1999Topics Catal. 8 1–21CrossRefGoogle Scholar
  24. 24.
    Reilly L M, Sankar G and Catlow C R A 1999J. Solid State Chem. 148 178CrossRefGoogle Scholar
  25. 25.
    Beale A M and Sankar G 2002J. Mater. Chem. 12 3064CrossRefGoogle Scholar
  26. 26.
    Depero L E and Sangaletti L 1995J. Solid State Chem. 119 428CrossRefGoogle Scholar
  27. 27.
    Keulks G W, Hall J L, Daniel C and Suzuki K 1974J. Catal. 34 79CrossRefGoogle Scholar
  28. 28.
    Bing Z, Pei S, Shishan S and Xiexian G 1990J. Chem. Soc., Faraday Trans. 86 3145CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  1. 1.Davy Faraday Research LaboratoryThe Royal Institution of Great BritainLondonUK

Personalised recommendations