Journal of Chemical Sciences

, Volume 115, Issue 5–6, pp 431–438 | Cite as

New perovskite-related oxides having high dielectric constant: Ln2Ba2CaZn2Ti3O14 (Ln = La and Pr)

  • Pika Jha
  • Ashok K. Ganguli


Two new oxides, La2Ba2CaZn2Ti3O14 and Pr2Ba2CaZn2Ti3O14, have been synthesized by the ceramic route at 1100°C. These oxides crystallize in the disordered cubic structure with an ‘a’ lattice parameter of 3.9728 (2) and 3.9448 (5) respectively. These oxides show high dielectric constant (70 and 57) and low loss (0.003 and 0.013 at 100 kHz) for La2Ba2CaZn2Ti3O14 and Pr2Ba2CaZn2Ti3O14 respectively. The dielectric constant is highly stable with frequency and temperature.


Perovskite structure oxides dielectric material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rao C N R and Gopalakrishnan J 1986New directions in solid state chemistry (Cambridge: University Press)Google Scholar
  2. 2.
    Rao C N R and Thomas J M 1985Acc. Chem. Res. 18 113CrossRefGoogle Scholar
  3. 3.
    Rao C N R, Gopalakrishnan J and Vidyasagar K 1984Indian J. Chem. A23 265Google Scholar
  4. 4.
    Anderson M T and Poeppelmeier K R 1991Chem. Mater. 3 476CrossRefGoogle Scholar
  5. 5.
    Anderson M T, Greenwood K B, Taylor G A and Poeppelmeier K R 1993Prog. Solid State Chem. 22 197CrossRefGoogle Scholar
  6. 6.
    Rao C N R (ed.) 1991Chemistry of high-temperature superconductors (Singapore: World Scientific)Google Scholar
  7. 7.
    Raveau B, Michel C, Hervieu M and Groult D 1991Crystal chemistry of high Tc superconducting copper-oxides (Berlin: Springer-Verlag)Google Scholar
  8. 8.
    Rao C N R and Ganguli A K 1995Acta Crystallogr. B51 604; Rao C N R and Ganguli A K 1995Chem. Soc. Rev. 24 1Google Scholar
  9. 9.
    Gormezano A and Weller M T 1993J. Mater. Chem. 3 771CrossRefGoogle Scholar
  10. 10.
    Anderson M T, Poeppelmeier K R, Zhang J P, Fan H J and Marks L D 1992Chem. Mater. 4 1305CrossRefGoogle Scholar
  11. 11.
    Zhu W J, Huang Y Z, Ning T S and Zhao Z X 1995Mater. Res. Bull. 30 243CrossRefGoogle Scholar
  12. 12.
    Pack M J, Gormezano A and Weller M T 1997Chem. Mater. 9 1547CrossRefGoogle Scholar
  13. 13.
    Kolar D and Suvorov D 1995Eur. J. Solid State Inorg. Chem. 32 751Google Scholar
  14. 14.
    Akbas M A and Davies P K 1998J. Am. Ceram. Soc. 81 670CrossRefGoogle Scholar
  15. 15.
    Akbas M A and Davies P K 1997J. Am. Ceram. Soc. 80 1727CrossRefGoogle Scholar
  16. 16.
    Cava R J 2001J. Mater. Chem. 11 54CrossRefGoogle Scholar
  17. 17.
    Cava R J, Krajewski J J and Roth R S 1999Mater. Res. Bull. 34 355CrossRefGoogle Scholar
  18. 18.
    Thirumal M, Jawahar I N, Surendran K P, Mohanan P and Ganguli A K 2002Mater. Res. Bull. 37 185CrossRefGoogle Scholar
  19. 19.
    Lee H J, Hong K S, Kim S J and Kim I T 1997Mater. Res. Bull. 32 847CrossRefGoogle Scholar
  20. 20.
    Wu Y J and Chen X M 2001J. Mater. Res. 16 1734CrossRefGoogle Scholar
  21. 21.
    Subramanian M A, Li D, Duan N, Reisner B A and Sleight A W 2000J. Solid State Chem,151 323CrossRefGoogle Scholar
  22. 22.
    Homes C C, Vogt T, Shapiro S M, Wakimoto S and Ramirez A P 2001Science 293 673CrossRefGoogle Scholar
  23. 23.
    Jha P, Arora P and Ganguli A K 2003Mater. Lett. 57 2443CrossRefGoogle Scholar
  24. 24.
    Jha P, Bobev S, Subbanna G N and Ganguli A K 2003Chem. Mater. 15 2229CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of TechnologyHauz Khas, New DelhiIndia

Personalised recommendations