Skip to main content
Log in

A numerical study of time-dependent schrödinger equation for multiphoton vibrational interaction of NO molecule, modelled as Morse oscillator, with intense far-infrared femtosecond lasers

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2004

Abstract

For the NO molecule, modelled as a Morse oscillator, time-dependent (TD) nuclear Schrödinger equation has been numerically solved for the multiphoton vibrational dynamics of the molecule under a far-infrared laser of wavelength 10503 nm, and four different intensities,I = 1 × 108, 1 × 1013, 5 × 1016, and 5 × 1018 W cm−2 respectively. Starting from the vibrational ground state at zero time, various TD quantities such as the norm, dissociation probability, potential energy curve and dipole moment are examined. Rich high-harmonics generation (HHG) spectra and above-threshold dissociation (ATD) spectra, due to the multiphoton interaction of vibrational motions with the laser field, and consequent elevation to the vibrational continuum, have been obtained and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gavrila M (ed.) 1992Atoms in intense laser fields (New York: Academic Press)

    Google Scholar 

  2. Mittleman M H 1993Introduction to the theory of laser-atom interactions (New York: Plenum)

    Google Scholar 

  3. Faisal F H M 1987Theory of multiphoton processes (New York: Plenum)

    Google Scholar 

  4. Bandrauk A D (ed.) 1994Molecules in laser fields (New York: Mercel Dekker)

    Google Scholar 

  5. Burnett K, Reed V C and Knight P L 1993J. Phys. B26 561

    Google Scholar 

  6. Protopapas M, Keitel C H and Knight P L 1997Rep. Prog. Phys. 60 389

    Article  Google Scholar 

  7. Joachain C J, Dörr M and Kylstra N J 2000Adv. At. Mol. Opt. Phys. 42 225

    Article  CAS  Google Scholar 

  8. Eberly J H, Grobe R, Law C K and Su Q 1992Adv. At. Mol. Opt. Phys. (Suppl.) 1 301

    Google Scholar 

  9. Eberly J H and Kulander K C 1993Science 262 1229

    Article  CAS  Google Scholar 

  10. Heather R and Metiu H 1987J. Chem. Phys. 86 5009

    Article  CAS  Google Scholar 

  11. Heather R and Metiu H 1988J. Chem. Phys. 88 5496

    Article  CAS  Google Scholar 

  12. Ting J J-L 1994J. Phys. B27 1249

    Google Scholar 

  13. Ting J J-L 1995Phys. Rev. A51 2641

    Google Scholar 

  14. Walker R B and Preston R K 1977J. Chem. Phys. 67 2017

    Article  CAS  Google Scholar 

  15. Goggin M E and Milonni P W 1988Phys. Rev. A37 796

    Google Scholar 

  16. Lin J T, Hayashi M, Lin S H and Jiang T F 1999Phys. Rev. A60 3911

    Google Scholar 

  17. Tanner J J and Maricq M M 1988Chem. Phys. Lett. 149 503

    Article  CAS  Google Scholar 

  18. Tanner J J and Maricq M M 1989Phys. Rev. A40 4054

    Google Scholar 

  19. Averbukh V and Moiseyev N 1998Phys. Rev. A57 1345

    Google Scholar 

  20. Jiang T F 1993Phys. Rev. A48 3995

    Google Scholar 

  21. Wadehra A, Vikas, Deb B M 2003J. Chem. Phys. 119 6620

    Article  CAS  Google Scholar 

  22. Berry R S, Rice S A and Ross J 2000Physical chemistry (Oxford: University Press) p. 189

    Google Scholar 

  23. Hammond B L, Lester W A Jr and Reynolds P J 1994Monte Carlo methods in ab initio quantum chemistry (Singapore: World Scientific)

    Google Scholar 

  24. Roy A K, Gupta N and Deb B M 2002Phys. Rev. A65 012109

    Google Scholar 

  25. Dey B K and Deb B M 1999J. Chem. Phys. 110 6229

    Article  CAS  Google Scholar 

  26. Roy A K, Dey B K and Deb B M 1999Chem. Phys. Lett. 308 523

    Article  CAS  Google Scholar 

  27. Gupta N, Roy A K and Deb B M 2002Pramana — J. Phys. 59 575

    Google Scholar 

  28. Wadehra A, Roy A K and Deb B M 2003Int. J. Quantum Chem. 91 597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor C N R Rao on his 70th birthday

An erratum to this article is available at http://dx.doi.org/10.1007/BF02708206.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadehra, A., Deb, B.M. A numerical study of time-dependent schrödinger equation for multiphoton vibrational interaction of NO molecule, modelled as Morse oscillator, with intense far-infrared femtosecond lasers. J Chem Sci 115, 349–364 (2003). https://doi.org/10.1007/BF02708228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708228

Keywords

Navigation