Advertisement

Journal of Chemical Sciences

, Volume 115, Issue 5–6, pp 349–364 | Cite as

A numerical study of time-dependent schrödinger equation for multiphoton vibrational interaction of NO molecule, modelled as Morse oscillator, with intense far-infrared femtosecond lasers

  • Amita Wadehra
  • B M Deb
Article

Abstract

For the NO molecule, modelled as a Morse oscillator, time-dependent (TD) nuclear Schrödinger equation has been numerically solved for the multiphoton vibrational dynamics of the molecule under a far-infrared laser of wavelength 10503 nm, and four different intensities,I = 1 × 108, 1 × 1013, 5 × 1016, and 5 × 1018 W cm−2 respectively. Starting from the vibrational ground state at zero time, various TD quantities such as the norm, dissociation probability, potential energy curve and dipole moment are examined. Rich high-harmonics generation (HHG) spectra and above-threshold dissociation (ATD) spectra, due to the multiphoton interaction of vibrational motions with the laser field, and consequent elevation to the vibrational continuum, have been obtained and analysed.

Keywords

NO molecule Morse oscillator dissociation dynamics vibrational HHG spectra vibrational ATD spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gavrila M (ed.) 1992Atoms in intense laser fields (New York: Academic Press)Google Scholar
  2. 2.
    Mittleman M H 1993Introduction to the theory of laser-atom interactions (New York: Plenum)Google Scholar
  3. 3.
    Faisal F H M 1987Theory of multiphoton processes (New York: Plenum)Google Scholar
  4. 4.
    Bandrauk A D (ed.) 1994Molecules in laser fields (New York: Mercel Dekker)Google Scholar
  5. 5.
    Burnett K, Reed V C and Knight P L 1993J. Phys. B26 561Google Scholar
  6. 6.
    Protopapas M, Keitel C H and Knight P L 1997Rep. Prog. Phys. 60 389CrossRefGoogle Scholar
  7. 7.
    Joachain C J, Dörr M and Kylstra N J 2000Adv. At. Mol. Opt. Phys. 42 225CrossRefGoogle Scholar
  8. 8.
    Eberly J H, Grobe R, Law C K and Su Q 1992Adv. At. Mol. Opt. Phys. (Suppl.) 1 301Google Scholar
  9. 9.
    Eberly J H and Kulander K C 1993Science 262 1229CrossRefGoogle Scholar
  10. 10.
    Heather R and Metiu H 1987J. Chem. Phys. 86 5009CrossRefGoogle Scholar
  11. 11.
    Heather R and Metiu H 1988J. Chem. Phys. 88 5496CrossRefGoogle Scholar
  12. 12.
    Ting J J-L 1994J. Phys. B27 1249Google Scholar
  13. 13.
    Ting J J-L 1995Phys. Rev. A51 2641Google Scholar
  14. 14.
    Walker R B and Preston R K 1977J. Chem. Phys. 67 2017CrossRefGoogle Scholar
  15. 15.
    Goggin M E and Milonni P W 1988Phys. Rev. A37 796Google Scholar
  16. 16.
    Lin J T, Hayashi M, Lin S H and Jiang T F 1999Phys. Rev. A60 3911Google Scholar
  17. 17.
    Tanner J J and Maricq M M 1988Chem. Phys. Lett. 149 503CrossRefGoogle Scholar
  18. 18.
    Tanner J J and Maricq M M 1989Phys. Rev. A40 4054Google Scholar
  19. 19.
    Averbukh V and Moiseyev N 1998Phys. Rev. A57 1345Google Scholar
  20. 20.
    Jiang T F 1993Phys. Rev. A48 3995Google Scholar
  21. 21.
    Wadehra A, Vikas, Deb B M 2003J. Chem. Phys. 119 6620CrossRefGoogle Scholar
  22. 22.
    Berry R S, Rice S A and Ross J 2000Physical chemistry (Oxford: University Press) p. 189Google Scholar
  23. 23.
    Hammond B L, Lester W A Jr and Reynolds P J 1994Monte Carlo methods in ab initio quantum chemistry (Singapore: World Scientific)Google Scholar
  24. 24.
    Roy A K, Gupta N and Deb B M 2002Phys. Rev. A65 012109Google Scholar
  25. 25.
    Dey B K and Deb B M 1999J. Chem. Phys. 110 6229CrossRefGoogle Scholar
  26. 26.
    Roy A K, Dey B K and Deb B M 1999Chem. Phys. Lett. 308 523CrossRefGoogle Scholar
  27. 27.
    Gupta N, Roy A K and Deb B M 2002Pramana — J. Phys. 59 575Google Scholar
  28. 28.
    Wadehra A, Roy A K and Deb B M 2003Int. J. Quantum Chem. 91 597CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  • Amita Wadehra
    • 1
  • B M Deb
    • 2
  1. 1.Theoretical Chemistry Group, Department of ChemistryPanjab UniversityChandigarhIndia
  2. 2.Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations