Advertisement

Korean Journal of Chemical Engineering

, Volume 19, Issue 1, pp 1–10 | Cite as

Surface science studies of Ziegler-Natta olefin polymerization system: Correlations between polymerization kinetics, polymer structures, and active site structures on model catalysts

  • Seong Han Kim
  • Craig R. Tewell
  • Gabor A. Somorjai
Featured Review

Abstract

The surface composition and structure of model Ziegler-Natta catalysts, polymerizing α-olefins to produce polyolefins, have been studied using modern surface science techniques and compared with their polymerization behaviors. Two types of thin films — TiClx/MgCl2 and TiCly/Au — were fabricated on an inert gold substrate, using chemical vapor deposition methods, to model the high-yield catalysts of MgCl2-supported TiCl4 and TiCl3-based catalysts, respectively. The model catalysts could be activated by exposure to triethylaluminum (AlFt3) vapor. Once activated, both catalysts were active for polymerization of ethylene and propylene in the absence of excess AlEt3 during polymerization. The model catalysts had polymerization activities comparable to the high-surface-area industrial catalysts. Though both catalysts were terminated with chlorine at the surface, each catalyst assumed different surface structures. The TiClx/MgCl2 film surface was composed of two structures: the (001) basal plane of these halide crystallites and a non-basal plane structure. The TiCly/Au film surface assumed only the non-basal plane structure. These structural differences resulted in different tacticity of the polypropylene produced with these catalysts. The TiClx/MgCl2 catalyst produced both atactic and isotactic polypropylene, while the TiCly/Au catalyst without the MgCl2 support produced exclusively isotactic polypropylene. The titanium oxidation state distribution did not have a critical role in determining the tacticity of the polypropylene.

Key words

Ziegler-Natta Polymerization Catalyst Active Sites Stereochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allegra, G.,Macromol. Symp.,89, 163 (1995) and see references therein.Google Scholar
  2. Arlman, E. J.,J. Catal.,3, 89 (1964).CrossRefGoogle Scholar
  3. Arlman, E. and Cossee, P. J.,J. Catal.,3, 99 (1964).CrossRefGoogle Scholar
  4. Barbè, P. C., Cecchin, G. and Noristi, L.,Adv. Polym. Sci.,81, 1 (1986).Google Scholar
  5. Boero, M., Parrinello, M. and Terakura, K.,J. Am. Chem. Soc.,120, 2746 (1998).CrossRefGoogle Scholar
  6. Boero, M., Parrinello, M. and Terakura, K.,Surf. Sci.,438, 1 (1999).CrossRefGoogle Scholar
  7. Boero, M., Parrinello, M., Huffer, S. and Terakura, K.,J. Am. Chem. Soc.,122, 501 (2000).CrossRefGoogle Scholar
  8. Boor, Jr. J., “Ziegler-Natta Catalysis and Polymerization,” Academic Press, New York (1979).Google Scholar
  9. Brant, P. and Speca, A. N.,Macromolecules,20, 2740 (1987).CrossRefGoogle Scholar
  10. Busico, V., Coradini, P., De Martino, L., Graziano, F. and Iadicicco, A.,Makromol. Chem.,192, 49 (1991).CrossRefGoogle Scholar
  11. Böhm, L. L.,Polymer,19, 545 (1978).CrossRefGoogle Scholar
  12. Cavallo, L., Guerra, G. and Corradini, P.,J. Am. Chem. Soc.,120, 2428 (1998).CrossRefGoogle Scholar
  13. Chien, J. C. W. and Hu, Y.,J. Polym. Sci. A,27, 897 (1989).CrossRefGoogle Scholar
  14. Chien, J. C. W. and Wu, J.-C.,J. Polym. Sci. Polym. Chem. Ed.,20, 2461 (1982).CrossRefGoogle Scholar
  15. Chien, J. C. W., Weber, S. and Hu, Y.,J. Polym. Sci. A,27, 1499 (1989).CrossRefGoogle Scholar
  16. Colbourn, E. A., Cox, P. A., Carruthers, B. and Jones, P. J. V.,J. Mater. Chem.,4, 805 (1994).CrossRefGoogle Scholar
  17. Cossee, P. J.,J. Catal.,3, 80 (1964).CrossRefGoogle Scholar
  18. Delhalle, J., Riga, J., Denis, J. P., Deleuze, M. and Dosiere, M.,Chem. Phys. Lett.,210, 21 (1993).CrossRefGoogle Scholar
  19. Dusseault, J. J. A. and Hsu, C. C.,J. Macromol. Sci. Rev. Macromol. Chem. Phys.,C33,103 (1993).Google Scholar
  20. Fairbrother, D. H., Roberts, J. G. and Somorjai, G. A.,Surf. Sci.,399, 109 (1998).CrossRefGoogle Scholar
  21. Fairbrother, D. H., Roberts, J. G., Rizzi, S. and Somorjai, G. A.,Langmuir,13, 2090 (1997).CrossRefGoogle Scholar
  22. Fink, G., Mülhaupt, R. and Brintziger, H. H. “Ziegler Catalysis” (eds). Springer-Verlag, Heidelberg (1994).Google Scholar
  23. For example, ref. 3, p. 295.Google Scholar
  24. Fuhrmann, H. and Herrmann, W.,Macromol. Chem. Phys.,195, 3509 (1994).CrossRefGoogle Scholar
  25. Gracias, D. H. and Somorjai, G. A.,Macromolecules,31, 1269 (1998).CrossRefGoogle Scholar
  26. Gross, T., Lippitz, A., Unger, W. E. S., Friedrich, J. and Woll, C.,Polymer,35, 5901 (1994).CrossRefGoogle Scholar
  27. Guerra, G., Pucciariello, R., Villani, V. and Corradini, P.,Polym. Commun.,28, 100 (1987).Google Scholar
  28. Gunter, P. L. J., Niemantsverdriet, J. W., Ribeiro, F. H. and Somorjai, G. A.,Catal. Rev.-Sci. and Eng.,39, 77 (1997).CrossRefGoogle Scholar
  29. Gutman, J. Y. and Guillet, J. E.,Macromolecules,3, 470 (1970).CrossRefGoogle Scholar
  30. Guttman, J. Y. and Guillet, J. E.,Macromolecules,1, 461 (1968).CrossRefGoogle Scholar
  31. Hamba, M., Han-Adebekun, G. C. and Ray, W. H.,J. Polym. Sci. Polym. Chem.,35, 2075 (1997).CrossRefGoogle Scholar
  32. Hasebe, K., Mori, H. and Terano, M.,J. Mol. Catal. A,124, L1 (1997).CrossRefGoogle Scholar
  33. Hayashi, T., Inoue, Y., Chujo, R. and Doi, Y.,Polymer,30, 1714 (1989).CrossRefGoogle Scholar
  34. Kakugo, M., Sadatoshi, H., Sakai, J. and Yokoyama, M.,Macromolecules,22, 22 (1989).Google Scholar
  35. Kakugo, M., Sadatoshi, H., Yokoyama, M. and Kojima, K.,Macromolecules,22, 547 (1989).CrossRefGoogle Scholar
  36. Kashiwa, N. and Yoshitake, J.,Makromol. Chem.,185,1133 (1984).CrossRefGoogle Scholar
  37. Keii, T., Suzuki, E., Tamura, M., Murata, M. and Doi, Y.,Makromol. Chem.,183, 2285 (1982).CrossRefGoogle Scholar
  38. Keii, T., “Kinetics of Ziegler-Natta Polymerization,” Kodanasha, Tokyo (1972).Google Scholar
  39. Kim, S. H. and Somorjai, G. A.,Appl. Surf. Sci.,161, 333 (2000a).CrossRefGoogle Scholar
  40. Kim, S. H. and Somorjai, G. A.,Catal. Lett.,66, 5 (2000c).CrossRefGoogle Scholar
  41. Kim, S. H. and Somorjai, G. A.,J. Phys. Chem. B (in press).Google Scholar
  42. Kim, S. H. and Somorjai, G. A.,J. Phys. Chem. B,104, 5519 (2000b).CrossRefGoogle Scholar
  43. Kim, S. H. and Somorjai, G. A.,J. Phys. Chem. B,105, 3922 (2001).CrossRefGoogle Scholar
  44. Kim, S. H. and Somorjai, G. A.,Surf. Interface Anal.,31, 401 (2001).Google Scholar
  45. Kim, S. H., Magni, E. and Somorjai, G. A.,Stud. Surf. Sci. Catal.,130, 3861 (2000a).CrossRefGoogle Scholar
  46. Kim, S. H., Tewell, C. R. and Somorjai, G. A.,Langmuir,16, 9414 (2001).CrossRefGoogle Scholar
  47. Kim, S. H., Vurens, G. and Somorjai, G. A.,J. Catal.,193, 171 (2000b).CrossRefGoogle Scholar
  48. Kissin, Y. V., “Isospecific Polymerization of Olefins with Heterogeneous Ziegler-Natta Catalysts,” Springer, New York (1985).Google Scholar
  49. Kohara, K., Shinogama, M., Doi, Y. and Keii, T.,Makromol. Chem.,180, 2139 (1979).CrossRefGoogle Scholar
  50. Lin, J. S. and Catlow, C. R. A.,J. Mater. Chem.,3,1217 (1993).CrossRefGoogle Scholar
  51. Lorenzo, V., Perena, J. M. and Fatou, J. G.,J. Mater. Sci. Lett.,8, 1455 (1989).CrossRefGoogle Scholar
  52. Magni, E. and Somorjai, G. A.,Appl. Surf. Sci.,89, 187 (1995a).CrossRefGoogle Scholar
  53. Magni, E. and Somorjai, G. A.,Catal. Lett.,35, 205 (1995c).CrossRefGoogle Scholar
  54. Magni, E. and Somorjai, G. A.,J. Phys. Chem. B,102, 8788 (1998).CrossRefGoogle Scholar
  55. Magni, E. and Somorjai, G. A.,J. Phys. Chem.,100,14786 (1996b).CrossRefGoogle Scholar
  56. Magni, E. and Somorjai, G. A.,Surf. Sci.,341, L1078 (1995b).CrossRefGoogle Scholar
  57. Magni, E. and Somorjai, G. A.,Surf. Sci.,345, 1 (1996a).CrossRefGoogle Scholar
  58. Magni, E. and Somorjai, G. A.,Surf. Sci.,377, 824 (1997).CrossRefGoogle Scholar
  59. Mckenna, T. F., Dupuy, J. and Spitz, R.,J. Appl. Polym. Sci.,57, 371 (1995).CrossRefGoogle Scholar
  60. Noristi, L., Marchetti, E., Baruzzi, G. and Sgarzi P.,J. Polym. Sci. A: Polym. Chem.,32, 3047 (1994).CrossRefGoogle Scholar
  61. Ogawa, T.,J. Appl. Polym. Sci.,44, 1869 (1992).CrossRefGoogle Scholar
  62. Paukkeri, R., Vaananen, T. and Lehtinen, A.,Polymer,34, 4075 (1993).CrossRefGoogle Scholar
  63. Petts, R. W. and Waugh, K. C.,Polymer,23, 897 (1982).CrossRefGoogle Scholar
  64. Puhakka, E., Pakkanen, T. T. and Pakkanen, T. A.,J. Mol. Catal. A,120, 143 (1997).CrossRefGoogle Scholar
  65. Puhakka, E., Pakkanen, T. T. and Pakkanen, T. A.,Surf. Sci.,334, 289 (1995).CrossRefGoogle Scholar
  66. Rainer, D. R. and Goodman, D. W.,J. Mol. Catal. A,131, 259 (1998).CrossRefGoogle Scholar
  67. Roberts, J. G., Gierer, M., Fairbrother, D. H., van Hove, M. A. and Somorjai, G. A.,Surf. Sci.,399, 123 (1998).CrossRefGoogle Scholar
  68. Rodriguez, L. A. M., Van Looy, H. M. and Gabant, J. A.,J. Polym. Sci. A-1,4, 1905 (1966).CrossRefGoogle Scholar
  69. Rodriguez, L. A. M., Van Looy, H. M. and Gabant, J. A.,J. Polym. Sci. A-1,4, 1971 (1966).CrossRefGoogle Scholar
  70. Santa Maria, L. C., Coutinho, F. M. and Bruno, J. C.,Eur. Polym. J.,29, 1319(1993).CrossRefGoogle Scholar
  71. Shariati, A., Hsu, C. C. and Bacon, D. W.,Polym. Reac. Eng.,7, 97 (1999).Google Scholar
  72. Shen, Y. R.,Ann. Rev. Phys. Chem.,40, 327 (1989).CrossRefGoogle Scholar
  73. Shiga, A., Kawamura-Kuribayashi, H. and Sasaki, T.,J. Mol. Catal,87, 243 (1994).CrossRefGoogle Scholar
  74. Shiga, A., Kawamura-Kuribayashi, H. and Sasaki, T.,J. Mol. Catal,98, 15 (1995).CrossRefGoogle Scholar
  75. Soga, K. and Shiono, T.,Prog. Polym. Sci.,22, 1503 (1997).CrossRefGoogle Scholar
  76. Soga, K., Chen, S. I. and Ohnishi, R.,Polymer Bull,4, 157 (1981a).Google Scholar
  77. Soga, K., Sano, T. and Ohnishi, R.,Polymer Bull.,8, 473 (1981b).CrossRefGoogle Scholar
  78. Somorjai, G. A., “Introduction to Surface Chemistry and Catalysis,” Wiley, New York (1994).Google Scholar
  79. Spitz, R., Lacombe, J. L. and Guyot, A.,J. Polym. Sci., Polym. Chem. Ed.,22, 2625 (1984).CrossRefGoogle Scholar
  80. Stair, P. C. and Li, C.,J. Vac. Sci. Tech. A,15, 1679 (1997).CrossRefGoogle Scholar
  81. Su, X., Cremer, P. S., Shen, Y. R. and Somorjai, G. A.,J. Am. Chem. Soc.,119, 3994 (1997).CrossRefGoogle Scholar
  82. Su, X., Cremer, P. S., Shen, Y. R. and Somorjai, G. A.,Phys. Rev. Lett.,77, 3858 (1996).CrossRefGoogle Scholar
  83. Tewell, C. R., Malizia, F., Ager, J. W. and Somorjai, G. A.,J. Phys. Chem. B (submitted).Google Scholar
  84. Valle, G., Baruzzi, G., Paganetto, G., Depaoli, G., Zannetti, R. and Marigo, A.,Inorg. Chim. Acta.,156, 157 (1989).CrossRefGoogle Scholar
  85. Venditto, V., Guerra, G. and Corradini, P.,Eur. Polym. J.,27, 45 (1991).CrossRefGoogle Scholar
  86. Woodruff, D. P. and Delchar, T. A., “Modern Techniques of Surface Science” Cambridge University Press, Cambridge (1994).Google Scholar
  87. Xie, T., McAuley, K. B., Hsu, J. C. C. and Bacon, D. W.,Ind. Eng. Chem. Res.,33, 449 (1994).CrossRefGoogle Scholar
  88. Zhang, D., Shen, Y. R. and Somorjai, G. A.,Chem. Phys. Lett.,281, 394 (1997).CrossRefGoogle Scholar
  89. Zuiker, C.D., Gruen, D. M. and Krauss, A. R.,MRS Bull.,20(5), 29 (1995).Google Scholar

Copyright information

© Korean Institute of Chemical Engineering 2002

Authors and Affiliations

  • Seong Han Kim
    • 1
  • Craig R. Tewell
    • 1
  • Gabor A. Somorjai
    • 1
  1. 1.Department of Chemistry, University of California at Berkeley and Materials Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations