Korean Journal of Chemical Engineering

, Volume 23, Issue 4, pp 650–657 | Cite as

A new correlation for VLE data: Application to binary mixtures containing nitrogen



Recently we proposed simple analytical expressions for the calculation of the equilibrium pressure, as well as the mole fractions of both liquid and vapor phases at the vapor-liquid equilibrium of binary mixtures. They are based on a recently proposed molecular model for the vapor pressure of pure non-polar fluids, which, for a given temperature, only requires as input the values of the two Lennard-Jones molecular parameters and the acentric factor, which are parameters related to the molecular shape of each substance, and whose values are readily available. The mixing rules contain adjustable parameters that must be obtained for each mixture. In this work, we test the applicability of the models for some mixtures containing nitrogen. In particular, we find that the calculation of mole fractions must be performed with particular care in some cases. We show that the model for the pressure clearly improves the results obtained with classical equations of state for most of the mixtures studied.

Key words

Binary Mixtures Molecular Parameters Nitrogen Vapor-liquid Equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akers, W.W., Kehn, D.M. and Kilgore, C. H., “Volumetric and phase behavior of nitrogen-hydrogen system: nitrogen-n-heptane system,”Ind. Eng. Chem.,46, 2536 (1954).CrossRefGoogle Scholar
  2. Ashour, I. and Aly, G., “Representation of VLE using selected EOSs,”Fluid Phase Equilibria,98, 55 (1994).CrossRefGoogle Scholar
  3. Ashour, I. and Aly, G., “Effect of computation techniques for equation of state binary interaction parameters on the prediction of binary VLE data,”Computers in Chem. Engn.,20, 79 (1996).CrossRefGoogle Scholar
  4. Benedict, M., Webb, G. B. and Rubin, L. C., “An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures,”J. Chem. Phys.,8, 334 (1940).CrossRefGoogle Scholar
  5. Coutinho, J., Kontogeorgis, G. and Stenby, E., “Binary interaction parameters for nonpolar systems with cubic EOSs: a theoretical approach. 1. CO2/hydrocarbons using SRK equation of state,”Fluid Phase Equilibria,102, 31 (1994).CrossRefGoogle Scholar
  6. Cuadros, F., Cachadiña, I. and Ahumada, W., “Determination of Lennard-Jones interaction parameters using a new procedure,”Mol. Engng.,6, 319 (1996).CrossRefGoogle Scholar
  7. Cuadros, F., FaÚndez, C. A. and Mulero, A., “Molecular Thermodynamic Models for the VLE p-T-x relationships of binary mixtures,”Phase Transitions,72, 309 (2000).CrossRefGoogle Scholar
  8. Cuadros, F., FaÚndez, C. A., Renuncio, J. A. R. and Mulero, A., “An analytical pressure-temperature-composition correlation for the VLE of CO2 binary mixtures,”Termochimica Acta,389, 167 (2002).CrossRefGoogle Scholar
  9. Cuadros, F., Mulero, A., Okrasinski, W., FaÚndez, C.A. and Parra, M. I., “VLE molecular thermodynamics of non polar fluids and their mixtures,”Int. Rev. Phys. Chem.,19, 387 (2003).Google Scholar
  10. DIPPR (Design Institute for Physical Property Data) files, American Institute of Chemical Engineers (1996).Google Scholar
  11. Dodge, B. F. (1926) In:Vapor-liquid data collection, Gmehling, J., Onken, U., Arlt, M. (Eds.), DECHEMA, Frankfurt am Main (1982).Google Scholar
  12. Englezos, P., Kalogerakis, N., Trebble, M. A. and Bishnoi, P. R., “Estimation of multiple binary interaction parameters in equations of state using VLE data. Application to the Trebble-Bishnoi equation of state,”Fluid Phase Equilibria,58, 117 (1990).CrossRefGoogle Scholar
  13. FaÚndez, C. A., Mulero, A. and Cuadros, F., “Molecular thermodynamic models for the vapour-liquids equilibrium of non-polar fluids,”J. Phase Equilibria,21, 364 (2000).CrossRefGoogle Scholar
  14. FaÚndez, C. A., Mulero, A. and Cuadros, F., “Molecular models for the VLE of simple binary mixtures,”J. Phase Equilibria,22, 531 (2001).CrossRefGoogle Scholar
  15. FaÚndez, C. A., Tamblay, L. E. and Valderrama, J. O., “A molecular model for correlating vapor-liquid equilibrium of propane+hydrocarbon mixtures,”Korean J. Chem. Eng.,21, 1199 (2004).Google Scholar
  16. Gao, G., Dadiron, J. L., Saint-Guirons, H., Xans, P. and Montel, F., “A simple correlation to evaluate binary interaction parameters of the Peng-Robinson equation of state: Binary light hydrocarbons systems,”Fluid Phase Equilibria,74, 85 (1992).CrossRefGoogle Scholar
  17. Gmehling, J., Onken, U. and Arlt, M. (Eds.),Vapor-liquid data collection, DECHEMA, Frankfurt am Main (1982).Google Scholar
  18. Kalra, N., Robinson, D.R. and Bessenger, G. J., “The equilibrium phase properties of nitrogen-n-pentane system,”J. Chem. Engng. Data,22, 215 (1977).CrossRefGoogle Scholar
  19. Keshtkar, A., Jalali, F. and Moshfeghian, M., “Evaluation of VLE of CO2 binary systems using UNIQUAC-based HV mixing rules,”Fluid Phase Equilibria,140, 107 (1997).CrossRefGoogle Scholar
  20. Lee, B. I. and Kesler, M.G., “A generalized thermodynamic correlation based on three-parameter corresponding states,”AIChE J.,21, 510 (1975).CrossRefGoogle Scholar
  21. Lemmon, E.W. and Jacobsen, R. T., “A Generalized model for the thermodynamic properties of mixtures,”Int. J. Thermophys.,20, 825 (1999).CrossRefGoogle Scholar
  22. Miller, P. and Dodge, B. F., “The system benzene-nitrogen. Liquid-vapor equilibria at elevated pressures,”Ind. Eng. Chem.,32, 434 (1940).CrossRefGoogle Scholar
  23. Peng, D.Y. and Robinson, D.B., “A new two-constant equation of state,”Ind. Engng. Chem. Fundamem.,15, 59 (1976).CrossRefGoogle Scholar
  24. Plöcker, U., Knapp, H. and Prausnitz, J.M., “Calculation of high-pressure vapor-liquid equilibria from a corresponding states correlation with emphasis on asymmetric mixtures,”Ind. Eng. Chem. Pr. Des. Dev.,17, 324 (1978).CrossRefGoogle Scholar
  25. Poling, B. E., Prausnitz, J.M. and O’Connell, J. P.,The properties of gases and liquids, Fifth Edition, McGraw-Hill Book Co., New York (2001).Google Scholar
  26. Polishuk, I., Wisniak, J. and Segura, H., “Prediction of the critical locus in binary mixtures using equation of state. I. Cubic equation of state, classical mixing rules, mixtures of methane-alkanes,”Fluid Phase Equilibria,164, 13 (1999).CrossRefGoogle Scholar
  27. Poston, R. S. and McKetta, J. J. (1966) In:Vapor-liquid data collection, Gmehling, J., Onken, U., Arlt, M. (Eds.), DECHEMA, Frankfurt am Main (1982).Google Scholar
  28. Roberts, L. R. and McKetta, J. J., “Vapor-liquid equilibrium in the nbutane-nitrogen system,”AIChE J.,7, 173 (1961).CrossRefGoogle Scholar
  29. Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state,”Chem. Eng. Sci.,27, 1197 (1972).CrossRefGoogle Scholar
  30. Valderrama, J. O., “The state of the cubic equations of state,”Ind. Eng. Chem. Research,42, 1603 (2003).CrossRefGoogle Scholar
  31. Wong, D. S. H. and Sandler, S. I., “A theoretical correct mixing rule for cubic equations of state,”AIChE J.,38, 671 (1992).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2006

Authors and Affiliations

  • Angel Mulero
    • 1
  • Daniel Larrey
    • 1
  • Francisco Cuadros
    • 1
  1. 1.Dpto. de FísicaUniversidad de ExtremaduraBadajozSpain

Personalised recommendations