Korean Journal of Chemical Engineering

, Volume 23, Issue 3, pp 356–361 | Cite as

Effects of ceria in CO2 reforming of methane over Ni/calcium hydroxyapatite

  • Ki Hoon Kim
  • Sang Yup Lee
  • Ki June Yoon


In CO2 reforming of methane over a calcium hydroxyapatite-supported nickel catalyst, the carbon deposition occurred more severely with increase of the methane partial pressure and at temperatures below about 1,000 K. The effects of ceria that was added as a promoter to the nickel catalyst were investigated. It was observed that the ceria not only enhanced the catalyst stability but also increased the activity, and this is considered owing to the oxygen storage capacity of ceria. The TGA analysis demonstrated that the ceria promoted the removal of the deposited carbon. The optimum Ce/Ni mole ratio was ca. 0.3/2.5. The deposited carbon could easily be removed by oxygen treatment at 1,023 K and the catalytic activity could be restored.

Key words

Calcium Hydroxyapatite Carbon Dioxide Reforming Ceria Nickel Promoter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asami, K., Li, X., Fujimoto, K., Koyama, Y., Sakurama, A., Kometani, N. and Yonezawa, Y., “CO2 reforming of CH4 over ceria-supported metal catalysts,”Catal. Today,84, 27 (2003).CrossRefGoogle Scholar
  2. Ashcroft, A. T., Cheetham, A. K., Green, M. L. H. and Vernon, P. D. F., “Partial oxidation of methane to synthesis gas using carbon dioxide,”Nature,352, 225 (1991).CrossRefGoogle Scholar
  3. Chang, J.-S., Park, S.-E. and Chon, H., “Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts,”Appl. Catal. A,145, 111 (1996).CrossRefGoogle Scholar
  4. Cracium, R., Daniell, W. and Knözinger, H., “The effect of CeO2 structure on the activity of supported Pd catalysts used for methane steam reforming,”Appl. Catal. A,230, 153 (2002).CrossRefGoogle Scholar
  5. Dong, W.-S., Jun, K.-W., Roh, H.-S., Liu, Z.-W. and Park, S.-E., “Comparative study on partial oxidation of methane over Ni/ZrO2, Ni/CeO2 and Ni/Ce-ZrO2 catalysts,”Catal. Lett.,78, 215 (2002).CrossRefGoogle Scholar
  6. Edwards, J. H. and Maitra, A. M., “The chemistry of methane reforming with carbon dioxide and its current and potential applications,”Fuel Process. Technol.,42, 269 (1995).CrossRefGoogle Scholar
  7. Fraenkel, D., Levitan, R. and Levy, M., “A solar thermochemical pipe based on the CO2: CH4 (1: 1) system,”Int. J. Hydrogen Energy,11, 267 (1986).CrossRefGoogle Scholar
  8. Inui, T., “Recent advances in catalysis for solving energy and environmental problems,”Catal. Today,51, 361 (1999).CrossRefGoogle Scholar
  9. Jun, J. H., Jeong, K. S., Lee, T.-J., Kong, S. J., Lim, T. H., Nam, S.-W., Hong, S.-A. and Yoon, K. J., “Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: effect of composition,”Korean J. Chem. Eng.,21, 140 (2004a).CrossRefGoogle Scholar
  10. Jun, J. H., Lee, T.-J., Lim, T. H., Nam, S.-W., Hong, S.-A. and Yoon, K. J., “Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: Characterization and activation,”J. Catal.,221, 178 (2004b).CrossRefGoogle Scholar
  11. Kim, K. H., Lee, S. Y., Nam, S.-W., Lim, T. H., Hong, S.-A. and Yoon, K. J., “Promotion effects of ceria in partial oxidation of methane over Ni-calcium hydroxyapatite,”Korean J. Chem. Eng.,23, 17 (2006).CrossRefGoogle Scholar
  12. Kusakabe, K., Sotowa, K.-I., Eda, T. and Iwamoto, Y., “Methane steam reforming over Ce-ZrO2-supported noble metal catalysts at low temperature,”Fuel Process. Technol.,86, 319 (2004).CrossRefGoogle Scholar
  13. Mattos, L. V., de Oliveira, E. R., Resende, P. D., Noronha, F. B. and Passos, F. B., “Partial oxidation of methane on Pt/Ce-ZrO2 catalsyts,”Catal. Today,77, 245 (2002).CrossRefGoogle Scholar
  14. Rostrup-Nielsen, J. R.,Catalytic steam reforming, Catalysis-Sci. Technol., Anderson, J. R. and Boudart, M., eds., Springer, Berlin,5, 1 (1984).Google Scholar
  15. Rostrup-Nielsen, J. R. and Bak Hansen, J.-H., “CO2-reforming of methane over transition metals,”J. Catal.,144, 38 (1993).CrossRefGoogle Scholar
  16. Sharma, S., Hilaire, S., Vohs, J. M., Gorte, R. J. and Jen, H.-W., “Evidence for oxidation of ceria by CO2,”J. Catal.,190, 199 (2000).CrossRefGoogle Scholar
  17. Shishido, T., Sukenobu, M., Morioka, H., Furukawa, R., Shirahase, H. and Takehira, K., “CO2 reforming of CH4 over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotalcite-like precursors,”Catal. Letters,73, 21 (2001).CrossRefGoogle Scholar
  18. Stagg-Williams, S. M., Noronha, F. B., Fendley, G. and Resasco, D. E., “CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides,”J. Catal.,194, 240 (2000).CrossRefGoogle Scholar
  19. Tomishige, K., Himeno, Y., Matsuo, Y., Yoshinaga, Y. and Fujimoto, K., “Catalytic performance and carbon deposition behavior of a NiOMgO solid solution in methane reforming with carbon dioxide under pressurized conditions,”Ind. Eng. Chem. Res.,39, 1891 (2000).CrossRefGoogle Scholar
  20. Tsyganok, A. I., Tsunoda, T., Hamakawa, S., Suzuki, K., Takehira, K. and Hayakawa, T., “Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxide,”J. Catal.,213, 191 (2003).CrossRefGoogle Scholar
  21. Wang, S. and Lu, G. Q. (Max), “Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane,”Appl. Catal. B,19, 267 (1998).CrossRefGoogle Scholar
  22. Wang, S. and Lu, G. Q. (Max), “A comprehensive study on carbon dioxide reforming of methane over Ni/-Al2O3 catalysts,”Ind. Eng. Chem. Res.,38, 2615 (1999).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2006

Authors and Affiliations

  1. 1.Department of Chemical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations