Advertisement

Acta Physiologiae Plantarum

, Volume 28, Issue 5, pp 453–457 | Cite as

Cadmium-induced microsomal membrane-bound peroxidases mediated hydrogen peroxide production in barley roots

  • Ladislav Tamás
  • Jana Huttová
  • Igor Mistrík
  • Marta Ollé
Article

Abstract

The effect of cadmium on microsomal membrane-bound peroxidases and their involvement in hydrogen peroxide production was studied in barley roots. One anionic and two cationic peroxidases were detected, which were strongly activated by Cd treatment. Positive correlation was found between root growth inhibition and increased peroxidase, NADH oxidase activity and H2O2 generation in root microsomal membrane fraction of Cd-treated barley roots.

Key words

oxidative stress peroxidase isozymes root growth inhibition 

List of abbreviations

AEC

3-amino-9-ethylcarbazole

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askerlund P., Larsson C., Widell S., Moller I.M. 1987. NAD(P)H oxidase and peroxidase activities in purified plasma membranes from cauliflower inflorescences. Physiol Plant., 71: 9–19.CrossRefGoogle Scholar
  2. Bradford M.N. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.PubMedCrossRefGoogle Scholar
  3. Chance B., Maehly A.C. 1995. Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, Vol 2. Academic Press, New York, NY, pp 764–775.Google Scholar
  4. Chaoui A., Jarrar B., El Ferjani E. 2004. Effects of cadmium and copper on peroxidase NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pearoots. J. Plant Physiol., 161: 1225–1234.PubMedCrossRefGoogle Scholar
  5. Chen S.L., Kao C.H. 1995. Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant growth regul., 17: 67–71.Google Scholar
  6. Cho U., Seo N. 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci., 168: 113–120.CrossRefGoogle Scholar
  7. de Marco A., Roubelakis-Angelakis K.A. 1996. The complexity of enzymatic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplast. Plant Physiol., 110: 137–145.PubMedGoogle Scholar
  8. Gadd G.M., White C. 1993. Microbial treatment of metal pollution — a working biotechnology. Trends Biotechnol., 11: 353–359.PubMedCrossRefGoogle Scholar
  9. Gonzáles L.F., Rojas M.C. 1999. Role of wall peroxidases in oat growth inhibition by DIMBOA. Phytochem., 50: 931–937.CrossRefGoogle Scholar
  10. Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. 2001. A large family of Class III plant peroxidases. Plant Cell Physiol., 42: 462–468.PubMedCrossRefGoogle Scholar
  11. Ishida A., Ookubo K., Ono K. 1987. Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha L. Plant Cell Physiol., 28: 723–726.Google Scholar
  12. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, 277: 680–685.CrossRefGoogle Scholar
  13. Liszkay A., Kenk B., Schopfer P. 2003. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta, 217: 658–667.PubMedCrossRefGoogle Scholar
  14. Mäder M., Ungemach J., Schloβ P. 1980. The role of peroxidase isoenzyme groups of Nicotiana tabacum in hydrogen peroxide formation. Planta, 147: 467–470.CrossRefGoogle Scholar
  15. Metwally A., Safranova V.I., Belimov A.A., Dietz K. 2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot., 56: 167–178.Google Scholar
  16. Mika A., Lüthje S. 2003. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol., 132: 1489–1498.PubMedCrossRefGoogle Scholar
  17. Olmos E., Martínez-Solano J.R., Piqueras A., Hellín E. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot., 54: 291–301.PubMedCrossRefGoogle Scholar
  18. Patykowski J., Urbanek H. 2003. Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J. Phytopathol., 151: 153–161.CrossRefGoogle Scholar
  19. Ranieri A., Castagna A., Scebba F., Careri M., Zagnoni I., Predieri G., Pagliari M., Sanita di Toppi L. 2005. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol. Biochem., 43: 45–54.PubMedCrossRefGoogle Scholar
  20. Reisfeld R.A., Levis U.J., Williams D.E. 1962. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature, 195: 281–283.PubMedCrossRefGoogle Scholar
  21. Romero-Puertas M.C., Palma J.M., Gómez M., Del Río L.A., Sandalio L.M. 2002. Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ., 25: 677–686.CrossRefGoogle Scholar
  22. Sanita di Toppi L., Gabbrielli R. 1999. Response to cadmium in higher plants. Env. Exp. Bot., 41: 105–130.CrossRefGoogle Scholar
  23. Schopfer P., Plachy C., Frahry G. 2001. Release of active oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberillin, and abscisic acid. Plant Physiol., 125: 1591–1602.PubMedCrossRefGoogle Scholar
  24. Šimonovičová M., Huttová J., Mistrík I., Široká B., Tamás L. 2004. Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions. Plant Growth Regul., 44: 267–275.CrossRefGoogle Scholar
  25. Šimonovičová M., Bočová B., Huttová J., Mitrík I., Tamás L. 2005. Effect of cadmium on oxalate oxidase activity in barley roots. Biologia, 60: 463–466.Google Scholar
  26. Tamás L., Huttová J., Mistrík I. 2003. Inhibition of A1-induced root elongation and enhancement of A1-induced peroxidase in A1-sensitive and A1-resistant barley cultivars are positively correlated. Plant Soil, 250: 193–200.CrossRefGoogle Scholar
  27. Tamás L., Šimonovičová M., Huttová J., Mistrík I. 2004. Elevated oxalate oxidase activity is correlated with A1-induced plasma membrane injury and root growth inhibition in young barley roots. Acta Physiol. Plant., 26: 85–93.CrossRefGoogle Scholar

Copyright information

© Department of Plant Physiology 2006

Authors and Affiliations

  • Ladislav Tamás
    • 1
  • Jana Huttová
    • 1
  • Igor Mistrík
    • 1
  • Marta Ollé
    • 1
  1. 1.Institute of BotanySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations