Skip to main content
Log in

Cadmium-induced microsomal membrane-bound peroxidases mediated hydrogen peroxide production in barley roots

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effect of cadmium on microsomal membrane-bound peroxidases and their involvement in hydrogen peroxide production was studied in barley roots. One anionic and two cationic peroxidases were detected, which were strongly activated by Cd treatment. Positive correlation was found between root growth inhibition and increased peroxidase, NADH oxidase activity and H2O2 generation in root microsomal membrane fraction of Cd-treated barley roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AEC:

3-amino-9-ethylcarbazole

ROS:

reactive oxygen species

References

  • Askerlund P., Larsson C., Widell S., Moller I.M. 1987. NAD(P)H oxidase and peroxidase activities in purified plasma membranes from cauliflower inflorescences. Physiol Plant., 71: 9–19.

    Article  CAS  Google Scholar 

  • Bradford M.N. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Chance B., Maehly A.C. 1995. Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, Vol 2. Academic Press, New York, NY, pp 764–775.

    Google Scholar 

  • Chaoui A., Jarrar B., El Ferjani E. 2004. Effects of cadmium and copper on peroxidase NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pearoots. J. Plant Physiol., 161: 1225–1234.

    Article  PubMed  CAS  Google Scholar 

  • Chen S.L., Kao C.H. 1995. Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant growth regul., 17: 67–71.

    CAS  Google Scholar 

  • Cho U., Seo N. 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci., 168: 113–120.

    Article  CAS  Google Scholar 

  • de Marco A., Roubelakis-Angelakis K.A. 1996. The complexity of enzymatic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplast. Plant Physiol., 110: 137–145.

    PubMed  Google Scholar 

  • Gadd G.M., White C. 1993. Microbial treatment of metal pollution — a working biotechnology. Trends Biotechnol., 11: 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Gonzáles L.F., Rojas M.C. 1999. Role of wall peroxidases in oat growth inhibition by DIMBOA. Phytochem., 50: 931–937.

    Article  Google Scholar 

  • Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. 2001. A large family of Class III plant peroxidases. Plant Cell Physiol., 42: 462–468.

    Article  PubMed  CAS  Google Scholar 

  • Ishida A., Ookubo K., Ono K. 1987. Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha L. Plant Cell Physiol., 28: 723–726.

    CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, 277: 680–685.

    Article  Google Scholar 

  • Liszkay A., Kenk B., Schopfer P. 2003. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta, 217: 658–667.

    Article  PubMed  CAS  Google Scholar 

  • Mäder M., Ungemach J., Schloβ P. 1980. The role of peroxidase isoenzyme groups of Nicotiana tabacum in hydrogen peroxide formation. Planta, 147: 467–470.

    Article  Google Scholar 

  • Metwally A., Safranova V.I., Belimov A.A., Dietz K. 2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot., 56: 167–178.

    CAS  Google Scholar 

  • Mika A., Lüthje S. 2003. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol., 132: 1489–1498.

    Article  PubMed  CAS  Google Scholar 

  • Olmos E., Martínez-Solano J.R., Piqueras A., Hellín E. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot., 54: 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Patykowski J., Urbanek H. 2003. Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J. Phytopathol., 151: 153–161.

    Article  CAS  Google Scholar 

  • Ranieri A., Castagna A., Scebba F., Careri M., Zagnoni I., Predieri G., Pagliari M., Sanita di Toppi L. 2005. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol. Biochem., 43: 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Reisfeld R.A., Levis U.J., Williams D.E. 1962. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature, 195: 281–283.

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas M.C., Palma J.M., Gómez M., Del Río L.A., Sandalio L.M. 2002. Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ., 25: 677–686.

    Article  CAS  Google Scholar 

  • Sanita di Toppi L., Gabbrielli R. 1999. Response to cadmium in higher plants. Env. Exp. Bot., 41: 105–130.

    Article  Google Scholar 

  • Schopfer P., Plachy C., Frahry G. 2001. Release of active oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberillin, and abscisic acid. Plant Physiol., 125: 1591–1602.

    Article  PubMed  CAS  Google Scholar 

  • Šimonovičová M., Huttová J., Mistrík I., Široká B., Tamás L. 2004. Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions. Plant Growth Regul., 44: 267–275.

    Article  Google Scholar 

  • Šimonovičová M., Bočová B., Huttová J., Mitrík I., Tamás L. 2005. Effect of cadmium on oxalate oxidase activity in barley roots. Biologia, 60: 463–466.

    Google Scholar 

  • Tamás L., Huttová J., Mistrík I. 2003. Inhibition of A1-induced root elongation and enhancement of A1-induced peroxidase in A1-sensitive and A1-resistant barley cultivars are positively correlated. Plant Soil, 250: 193–200.

    Article  Google Scholar 

  • Tamás L., Šimonovičová M., Huttová J., Mistrík I. 2004. Elevated oxalate oxidase activity is correlated with A1-induced plasma membrane injury and root growth inhibition in young barley roots. Acta Physiol. Plant., 26: 85–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamás, L., Huttová, J., Mistrík, I. et al. Cadmium-induced microsomal membrane-bound peroxidases mediated hydrogen peroxide production in barley roots. Acta Physiol Plant 28, 453–457 (2006). https://doi.org/10.1007/BF02706628

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706628

Key words

Navigation