Acta Physiologiae Plantarum

, Volume 28, Issue 3, pp 251–256 | Cite as

Presence of methyl branched fatty acids and saturated hydrocarbons in botryococcene producing strain of Botryococcus braunii

  • C. Dayananda
  • R. Sarada
  • P. Srinivas
  • T. R. Shamala
  • G. A. RavishankarEmail author


Botryococcus braunii (N-836) produced 60 – 73% hydrocarbons on dry weight basis, of which C34 botryococcene was found to be the major hydrocarbon, constituting about 50 – 76 % of total content throughout the experimental studies. Major fatty acids present in this organism were C18:1 and C16:0. Saturated hydrocarbons like docosane, hexacosane and heptacosane were also found to be produced by the organism. Methyl branched fatty acids, were identified as 16-methyl heptadecanoic and 5, 9, 13 - trimethyl tetradecanoic acids by GC-MS. Maximum hydrocarbon accumulation was observed during third week of its growth.

Key words

Botryococcus braunii Botryococcenes Hydrocarbons Methyl branched fatty acids Microalgae 

List of abbreviations


Fatty acid methyl esters


Flame ionization detector








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achitouv E., Metzger P., Rager M.N., Largeau C. 2004. C31–C34 methyl branched squalene from a Bolivian strain of Botryococcus braunii. Phytochemistry., 65: 3159–3165.PubMedCrossRefGoogle Scholar
  2. Brown A.C., Knights B.A., Ellisie Conway. 1969. Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry., 8: 543–547.CrossRefGoogle Scholar
  3. Christie W. W. 1982. Lipid analysis, 2nd edn. Pergamon press, New York, p. 93–96.Google Scholar
  4. Dayananda C., Sarada R., Sila Bhattacharya, Ravishankar G.A. 2005. Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochemistry., 40: 3125–3131.CrossRefGoogle Scholar
  5. Fiske C.H., Subba Rao Y. 1925. The colorimetric determination of inorganic phosphorus. Journal of Biological Chemistry., 66: 375–400.Google Scholar
  6. Frenz J., Largeau C., Caradevall E. 1989. Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzyme Microbial Technology., 11: 17–724.CrossRefGoogle Scholar
  7. Grice, K., Schouten, S., Nissenbaum, A., Charrach, J., Sinninghe Damste, J. S. 1998. A remarkable paradox: Sulfurised fresh water algal (Botryococcus braunii) lipids in an ancient hyper saline auxinic ecosystem. Organic Geochemistry., 28: 195–216.CrossRefGoogle Scholar
  8. Hillen L.W., Pollard G., Wake L.V., White. 1982. Hydrocracking of the Oils of Botryococcus braunii to Transport Fuels. Biotechnology and Bioengineering., 24: 193–205.CrossRefGoogle Scholar
  9. Krishnan R. 2003. Patent No. WO-03092671. Method of inhibiting angiogenesis.Google Scholar
  10. Krishnan R. and Collin P.D. 2003. Patent No. WO-03092672. Method of inhibiting rejection of transplanted material.Google Scholar
  11. Largeau C., Caradevall E., Berkaloff C., Dhamliencourt P. 1980. Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry., 19: 1043–1051.CrossRefGoogle Scholar
  12. Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. Packer L, Douce R. Academic press,. Vol.148: 350–382.Google Scholar
  13. Maxwell J.R., Douglas A.G., Eglinton G., McCormick 1968. The botryococcenes-hydrocarbons of novel structure from the alga Botryococcus braunii, Kutzing. Phytochemistry., 7: 2157–2171.CrossRefGoogle Scholar
  14. Metzger P., Allard B., Casadevall E., Berkaloff C., Coute A. 1990. Structure and Chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces Lycopadiene, a tetraterpenoid hydrocarbon. J. Phycol., 26: 258–266.CrossRefGoogle Scholar
  15. Metzger P., Berkaloff C., Casadevall E., Coute A. 1985. Alkadiene and botryococcene producing races of wild strains of Botryococcus braunii. Phytochemistry., 24: 305–2312.CrossRefGoogle Scholar
  16. Metzger P., C. Largeau 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol., 66: 486–496.PubMedCrossRefGoogle Scholar
  17. Metzger P., Templier J., Largeau C., Casadevall E. 1986. An n-alkatriene and some alkadienes from the A race of the green algae Botryococcus braunii. Phytochemistry., 25: 1869–1872.CrossRefGoogle Scholar
  18. Sawayama S., Minowa T., Dota Y., Yokayama S. 1992. Growth of hydrocarbon rich microalga Botryococcus braunii in secondarily treated sewage. Applied Microbial Biotechnology., 38: 135–138.Google Scholar
  19. Wake L.V. and Hillen L.W. 1980. Study of a “Bloom” of the Oil Rich Alga Botryococcus braunii in the Darwin River Reservoir. Biotechnology and Bioengineering., 22: 1367–1656CrossRefGoogle Scholar

Copyright information

© Department of Plant Physiology 2006

Authors and Affiliations

  • C. Dayananda
    • 1
  • R. Sarada
    • 1
  • P. Srinivas
    • 2
  • T. R. Shamala
    • 3
  • G. A. Ravishankar
    • 1
    Email author
  1. 1.Plant Cell Biotechnology DepartmentCentral Food Technological Research InstituteMysoreIndia
  2. 2.Plantation Products, Spices and Flavour Technology DepartmentCentral Food Technological Research InstituteMysoreIndia
  3. 3.Food Microbiology DepartmentCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations