, Volume 28, Issue 3–4, pp 359–382 | Cite as

Solidification cracking in austenitic stainless steel welds

  • V. Shankar
  • T. P. S. Gill
  • S. L. Mannan
  • S. Sundaresan


Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.


Austenitic stainless steels solidification cracking composition effects varestraint testing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arata Y, Matsuda F, Katayama S 1977 Solidification crack susceptibility in weld metals of fully austenitic stainless steels (report II) -effect of ferrite, P, S, C, Si, and Mn on ductility properties of solidification brittleness.Trans. Jpn. Weld. Res. Inst. 6: 105–116Google Scholar
  2. Arata Y, Matsuda F, Saruwatari S 1974 Varestraint test for solidification crack susceptibility in weld metals of austenitic stainless steels.Trans. Jpn. Weld. Res. Inst. 3: 79–88Google Scholar
  3. Babu S S, Vitek J M, Iskander Y S, David S A 1997 New model for prediction of ferrite number of stainless steel welds.Sci. Technol. Welding Joining 2: 279–285Google Scholar
  4. Bhadeshia H K D H, David S A, Vitek J M 1991 Solidification sequences in stainless steel dissimilar alloy welds.Mater. Sci. Technol. 7: 50–61Google Scholar
  5. Blake P D 1979 Nitrogen in steel weld metals.Metal Constr. 9: 196–197Google Scholar
  6. Borland J C 1960 Generalized theory of super-solidus cracking in welds (and castings).Br. Weld, J. 7: 508–512Google Scholar
  7. Borland J C, Younger R N 1960 Some aspects of cracking in welded Cr-Ni austenitic steels.Br. Weld, J. 7: 22–59Google Scholar
  8. Brooks J A 1974 Effect of alloy modifications on HAZ cracking of A-286 stainless steel.Weld, J. 53: 517s-523sGoogle Scholar
  9. Brooks JA 1975 Weldability of high N, high-Mn austenitic stainless steel.Weld, J. 54: 189s-195sGoogle Scholar
  10. Brooks J A, Lambert Jr. F J 1978 The effects of phosphorus, sulfur and ferrite content on weld cracking of type 309 stainless steel.Weld, J. 57: 139s-143sGoogle Scholar
  11. Brooks J A, Thompson A W, Williams J C 1984 A fundamental study of the beneficial effects of δ-ferrite in reducing weld cracking.Weld, J. 63: 71s-83sGoogle Scholar
  12. Brooks J A, Thompson A W 1991 Micro structural development and solidification cracking susceptibility of austenitic stainless steel welds.Int. Mater. Rev. 36: 16–44Google Scholar
  13. Cieslak M J, Ritter A M, Savage W F 1982 Solidification cracking and analytical electron microscopy of austenitic stainless steel weld metals.Weld, J. 61: 1s-8sGoogle Scholar
  14. Clyne T W, Davies G J 1981 The influence of composition on solidification cracking susceptibility in binary alloy systems.Bri. Foundryman 74: 65–73Google Scholar
  15. David S A, Goodwin G M, Braski D N 1979 Solidification behaviour of austenitic stainless steel filler metals.Weld, J. 58: 330s-336sGoogle Scholar
  16. Dixon B 1988 Weld metal solidification cracking in austenitic stainless steels.Aust. Weld, J. 16: 2–10Google Scholar
  17. Eckenrod J J, Kovach C W 1979Effect of nitrogen on the sensitization, corrosion and mechanical properties of 18Cr-8Ni stainless steels (eds) C R Brinkman, H W Garvin,ASTMSTP 679, pp 17–41Google Scholar
  18. Egnell L, May W M 1970 Welding trials on a titanium-bearing austenitic steel.Welding Inst. Conf. on welding of creep-resistant steels, pp 144–151Google Scholar
  19. Folkhard E 1988Welding metallurgy of stainless steels (New York: Springer Verlag)Google Scholar
  20. Fredriksson H 1979 Transition from peritectic to eutectic reaction in iron-base alloys.Solidification and casting of metals (London: The Metals Society) pp 131–138Google Scholar
  21. Goodwin G M 1987 Development of a new hot-cracking test -the sigmajig.Weld, J. 66: 33s-38sGoogle Scholar
  22. Goodwin G M 1988 The effects of heat input and weld process on hot cracking in stainless steel.Weld, J. 67: 88s-94sGoogle Scholar
  23. Goodwin G M 1990 Test methods for evaluating hot cracking: review and perspective.Advances in welding metallurgy (Miami, FL: Am. Welding Soc./Jap. Welding Soc./Japn. Welding Eng. Soc.) pp 37–49Google Scholar
  24. Hammar O, Svensson U 1979 Influence of steel composition on segregation and microstructure during solidification of austenitic stainless steels.Solidification and casting of metals (London: The Metals Society) pp 401–410Google Scholar
  25. Hemsworth B, Boniszewski T, Eaton N F 1969 Classification and definition of high temperature welding cracks in alloys.Met. Constr. Br. Weld, J. 2: 5–16Google Scholar
  26. Hoerl A, Moore T J 1957 The welding of type 347 steels.Weld. J. 46: 442s-48sGoogle Scholar
  27. Hull F C 1960 Effects of alloying additions on hot cracking of austenitic stainless steels.Proc. ASTM 60: 667–690Google Scholar
  28. Hull F C 1967 The effect of δ-ferrite on the hot cracking of stainless steel.Weld, J. 46: 399s-409sGoogle Scholar
  29. Jolley G, Geraghty J E 1979 Solidification cracking in 18Cr-13Ni-1Nb stainless steel weld metal: the role of magnesium additions.Solidification and casting of metals (London: The Metals Society) pp 411–415Google Scholar
  30. Kakhovskii N Iet al 1971 Effects of silicon, nitrogen and manganese on chemical heterogeneity in type 0Kh23N28M3D3T weld metals and their resistance to hot cracking.Avtomatich. Svarka 8: 11–14Google Scholar
  31. Kelly T F, Cohen M, Vandersande J B 1984 Rapid solidification of a droplet-processed stainless steel.Met. Trans. A15: 819–833Google Scholar
  32. Koseki T, Flemings M C 1996 Solidification of undercooled Fe-Cr-Ni alloys part II -microstructural evolution.Metall. Mater. Trans. A27: 3226–3240CrossRefGoogle Scholar
  33. Koseki T, Matsumiya T, Yamada W, Ogawa T 1994 Numerical modeling of solidification and subsequent transformation of Fe-Cr-Ni alloys.Metall. Mater. Trans. A25: 1309–1321CrossRefGoogle Scholar
  34. Kotecki D J, Siewert T A 1992 WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram.Weld, J. 71: 171s-178sGoogle Scholar
  35. Kujanpaa V, Suutala N, Takalo T, Moisio T 1979 Correlation between solidification cracking and microstructure in austenitic-ferritic stainless steel welds.Weld, Res. Int. 9: 55–76Google Scholar
  36. Kujanpaa V P 1985 Effects of steel type and impurities in solidification cracking of austenenitic stainless steel welds.Met. Constr. 117: 40R-46RGoogle Scholar
  37. Kurz W, Fischer D J 1985Fundamentals of solidification (New York: Trans. Tech.)Google Scholar
  38. Li L, Messler R W 1999 The effects of phosphorus and sulfur on susceptibility to weld hot cracking in austenitic stainless steels.Weld, J. 88: 387s-396sGoogle Scholar
  39. Lin W, Nelson T, Lippold J C 1992 InProc. ’Eighth Annual North American Welding Research Conference ’ (Columbus, OH: Am. Welding Soc./Edison Welding Inst./TWI) pp 1–6Google Scholar
  40. Lingenfelter A C 1972 Varestraint testing of nickel alloys.Weld, J. 51: 430s-36s.Google Scholar
  41. Lundin C D, DeLong W T, Spond D F 1975 Ferrite-fissuring relationships in austenitic stainless steel weld metals.Weld, J. 54: 241s-246sGoogle Scholar
  42. Lundin C D, Chou C-P D, Sullivan D J 1980 Hot cracking resistance of austenitic stainless steel weld metals.Weld, J. 59: 226s-232sGoogle Scholar
  43. Lundin C D, Lingenfelter A C, Grotke G E, Lessman G G, Matthews S J 1982 The varestraint test.Weld, Res. Bull. (280): 1–19Google Scholar
  44. Lundin C D, Chou C-P D 1983 Hot cracking of austenitic stainless steels weld metals.WRC Bull. No. 289Google Scholar
  45. Lundin C D, Menon R, Lee C H, Osorio V 1986 New concepts in varestraint testing for hot cracking. InWelding Research: The State of the Art, JDC University Research Symposium Proceedings, ASM, pp 33–42Google Scholar
  46. Lundin C D, Lee C H, Menon R, Osorio V 1988a Weldability evaluations of modified 316 and 347 austenitic stainless steels: Part I -preliminary results.Weld, J. 67: 35s-46sGoogle Scholar
  47. Lundin C D, Lee C H, Menon R 1988b Hot ductility and weldability of free machining austenitic stainless steel.Weld, J. 67: 119s-130sGoogle Scholar
  48. Lundin C D, Lee C H, Qiao C Y P 1988cGroup sponsored study -weldability and hot ductility behaviour of nuclear grade austenitic stainless steels. Final Report, Univ. of Tennessee, Knoxville, TNGoogle Scholar
  49. Massalski T B 1996Alloy phase diagrams (Metals Park, OH: ASM)Google Scholar
  50. Masumoto I, Takami K, Kutsuna M 1972 Hot cracking of austenitic stainless steel weld metal.J. Jpn. Welding Soc. 41: 1306–1314Google Scholar
  51. Matsuda F 1990 Hot crack susceptibility of weld metal. InAdvances in welding metallurgy (Miami, FL: Am. Welding Soc./Jap. Welding Soc./Japn. Welding Eng. Soc.) pp 19–35Google Scholar
  52. Matsuda F, Nakagawa H, Nakara K, Sasaki I 1976Trans. Jpn. Weld. Res. Inst. 5: 53–67Google Scholar
  53. Matsuda F, Nakagawa H, Uehara T, Katayama S, Arata Y 1979 A new explanation for role of δ-ferrite improving weld solidification crack susceptibility in austenitic stainless steel.Trans. Jpn. Weld. Res. Inst. 8:105–112Google Scholar
  54. Matsuda F, Katayama S, Arata Y 1981 Solidification crack susceptibility in weld metals of fully austenitic stainless steels -solidification crack susceptibility and amount of phosphide and sulphide in SUS 310 weld metal.Trans. Jpn. Weld, Res. Inst. 10: 201–212Google Scholar
  55. Matsuda F, Nakagawa H, Katayama S, Arata Y 1982a Solidification crack susceptibility in weld metals of fully austenitic stainless steels (report VI) -effect of La or REM addition on solidification crack resistance.Trans. Jpn. Weld, Res. Inst. 11: 79–94Google Scholar
  56. Matsuda F, Nakagawa H, Sorada K 1982b Dynamic observation of solidification and solidification cracking during welding with optical microscope.Trans. Jpn. Weld, Res. Inst. 11: 67–77Google Scholar
  57. Matsuda F, Nakagawa H, Katayama S, Arata Y 1983a Solidification crack susceptibility in weld metals of fully austenitic stainless steels (report VIII) -effect of nitrogen on cracking in SUS 304 weld metal.Trans. Jpn. Weld, Res. Inst. 12: 89–95Google Scholar
  58. Matsuda F, Katayama S, Arata Y 1983b Solidification crack susceptibility in weld metals of fully austenitic stainless steels (report IX) -effect of titanium on solidification crack resistance.Trans. Jpn. Weld, Res. Inst. 12: 87–92Google Scholar
  59. Matsuda F, Nakagawa H, Kato I, Murata Y 1986Trans. Jpn. Weld, Res. Inst. 15: 99–112Google Scholar
  60. Matsuda F, Nakagawa H, Lee J B 1989a Weld cracking in duplex stainless steel (Report II) -modelling of cellular dendritic growth during weld solidification.Trans. Jpn. Weld, Res. Inst. 18: 107–117Google Scholar
  61. MatsudaF, Nakagawa H, Lee J B 1989b Weld cracking in duplex stainless steel (Report III) -numerical analysis of solidification BTR in stainless steel.Trans. Jpn. Weld, Res. Inst. 18: 119–126Google Scholar
  62. Maziasz P J 1989 Developing an austenitic stainless steel for improved performance in advanced fossil power facilities.J. Met. 12: 14–20Google Scholar
  63. Medovar I1954 On the nature of weld hot cracking.Avtomatich. Svarka 7: 12–28Google Scholar
  64. Menon R, Kotecki D J 1989 Literature review -nitrogen in stainless steel weld metal.WRC Bull. No. 389, pp 142–161Google Scholar
  65. Mills K C, Keene B J 1990Int. Mater. Rev. 35: 185–216Google Scholar
  66. Miura M 1981 Weldability of austenitic stainless steel tubes.J. Sumitomo Met. 34: 201–213Google Scholar
  67. Mudali U K, Dayal R K, Gill T P S, Gnanamoorthy J B 1986 Influence of nitrogen addition on microstructure and pitting corrosion resistance of austenitic weld metals.Werkstoffe Korros. 37: 637–643Google Scholar
  68. Ogawa T, Tsunetomi E 1982 Hot cracking susceptibility of austenitic stainless steels.Weld, J. 61: 82s-93sGoogle Scholar
  69. Ogawa T, Suzuki K, Zaizen T 1984 The weldability of nitrogen-containing austenitic stainless steel: part II-porosity, cracking and creep properties.Weld, J. 63: 213s-223sGoogle Scholar
  70. Olson D L 1985 Prediction of austenitic weld metal microstructure and properties.Weld, J. 64: 281s-295sGoogle Scholar
  71. Omsen A, Eliasson L 1971 Distribution of nitrogen during solidification of a 17-5Cr-13Ni-2-8Mo stainless steel.J. Iron Steel Inst. 10: 830–833Google Scholar
  72. Pehlke R D, Elliott J F 1960Trans. AIME 218: 1088–1101Google Scholar
  73. Pellini W S 1952 Strain theory of hot tearing.Foundry November 1952, p 125Google Scholar
  74. Pepe J J, Savage W F 1967 Effects of constitutional liquation on 18-Ni maraging steel weldments.Weld, J. 46:411s-422sGoogle Scholar
  75. Persson N G 1971 The influence of sulphur on the structure and weldability of a titanium-bearing austenitic stainless steel.Proc. of the Soviet-Swedish Symposium. Clean Steel, Sandviken, Sweden I: 142–151Google Scholar
  76. Prokhorov N N, Prokhorov N Nikol 1971 Fundamentals of the theory for technological strength of metals while crystallizing during welding.Trans Jap. Welding Soc. 2: 109–117Google Scholar
  77. Rabensteiner G, Tosch J, Schaberiter H 1983 Hot cracking problems in different fully austenitic weld metals.Weld. J. 62: 21s-27sGoogle Scholar
  78. Savage W F, Lundin C D 1965 Application of the varestraint technique to the study of weldability.Weld. J. 45: 497s-503sGoogle Scholar
  79. Schaeffler A L 1949 Constitution diagram for stainless steel weld metal.Met. Progr. 56: 680–680BGoogle Scholar
  80. Scherer R, Riedrich G, Hougardy H 1941 US Patent 2 240 672Google Scholar
  81. Semenyuk N I, Rabkin D M, Korshun A O 1986 Determining the hot cracking temperature range in the welding of aluminium alloys.Autom. Weld, 39: 16–18Google Scholar
  82. Shankar V 2000Role of compositional factors in hot cracking of austenitic stainless steel weldments. PhD thesis, Indian Institute of Technology -Madras, ChennaiGoogle Scholar
  83. Shankar V, Gill T P S, Terrance A L E, Mannan S L, Sundaresan S 2000a Relation between microstructure, composition and hot cracking in Ti-stabilised austenitic stainless steel weldments.Metall. Mater. Trans. A31: 3109–3122CrossRefGoogle Scholar
  84. Shankar V, Gill T P S, Mannan S L, Sundaresan S 2000b Criteria for hot cracking evaluation in austenitic stainless steel welds using the longitudinal varestraint and transvarestraint tests.Sci. Technol. Weld. Join. 5: 91–97CrossRefGoogle Scholar
  85. Siewert T A, McCowan C N, Olson D L 1988 Ferrite number prediction to 100 FN in stainless steel weld metal.Weld, J. 37: 289s-298sGoogle Scholar
  86. Smith C S 1948 Grains, phases and interfaces: an interpretation of microstructure.Trans. Am. Inst. Mining Metall. Eng. 175: 15–51Google Scholar
  87. Stevens S M 1989 Forms of nitrogen in weld metal.WRC Bull. (369): pp 1–2Google Scholar
  88. Suutala N, Moisio T 1979Solidification technology in the foundry and the casthouse (London: The Metals Society)Google Scholar
  89. Suutala N 1982 Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds.Met. Trans. A13: 2121–2130Google Scholar
  90. Suutala N 1983 Effect of solidification conditions on the solidification mode in austenitic stainless steels.Met. Trans. A14: 191–197Google Scholar
  91. Thier H, Killing R, Killing U 1987 Solidification modes of weldments in corrosion resistant steels -how to make them visible.Met. Constr. 19: 127–130Google Scholar
  92. Vitek J M, Iskander Y S, Oblow E M 2000 Improved ferrite number prediction in stainless steel arc welds using artificial neural networks -Parts I and II.Weld, J. 79: 33-s-40-s, 41-s–50-sGoogle Scholar
  93. Won Y M, Yeo T-J, Seol D J, Oh K H 2000 A new criterion for internal crack formation in continuously cast steels.Met. Mater. Trans. B31: 779–794CrossRefGoogle Scholar
  94. Wolstenholme D A 1973 Weld crater cracking in Incoloy 800.Weld, Met. Fabrication 41: 433–438Google Scholar
  95. Zhitnikov N P 1981 The hot cracking resistance of austenitic CrNi weld metal and weld zone in relation to nitrogen content.Weld, Prod, 3: 14–16Google Scholar

Copyright information

© Printed in India 2003

Authors and Affiliations

  • V. Shankar
    • 1
  • T. P. S. Gill
    • 1
  • S. L. Mannan
    • 1
  • S. Sundaresan
    • 1
    • 2
  1. 1.Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Department of Metallurgical EngineeringIndian Institute of Technology -MadrasChennaiIndia

Personalised recommendations