Advertisement

Pramana

, Volume 60, Issue 3, pp 483–490 | Cite as

Momentum densities and Compton profiles of alkali-metal atoms

  • Pranab Sarkar
  • Anupam Sarkar
  • S. N. Roy
  • B. Talukdar
Article
  • 34 Downloads

Abstract

It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from3Li to37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom3Li. Similar results for11Na,19K and37Rb are compared with the corresponding Hartree-Fock-Roothaan values only, for want of data from other realistic calculations

Keywords

Quantum defect theory wave functions of alkali-metal atoms omentum properties 

PACS Nos

31.15.Ne 31.25.Eb 32.80.Cy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A Sommerfeld,Atomic structure and spectral lines (Methuen and Co. Ltd., London, 1934)Google Scholar
  2. [2]
    N Schwentnu and M Chergeni,J. Chem. Phys. 85, 3458 (1986)CrossRefADSGoogle Scholar
  3. [2a]
    A Bhattacharyya, P K Bera, M M Panja and B Talukdar,Phys. Rev. A51, 841 (1995)ADSGoogle Scholar
  4. [3]
    M J Seaton,Rep. Prog. Phys. 46, 167 (1983)CrossRefADSGoogle Scholar
  5. [3a]
    U Fano,J. Opt. Soc. Am. 65, 979 (1975)ADSCrossRefGoogle Scholar
  6. [3b]
    L A Sakhnovich,Theor. Math. Phys. 180, 876 (1996)MathSciNetGoogle Scholar
  7. [4]
    M J Seaton,Mon. Not. R. Astron. Soc. A118, 504 (1958)ADSMathSciNetGoogle Scholar
  8. [5]
    D R Bates and A Damgaard,Philos. Trans. R. Soc. A242, 101 (1949)CrossRefADSGoogle Scholar
  9. [5a]
    M Matsuzawa,J. Phys. B12, 3743 (1979)ADSGoogle Scholar
  10. [5b]
    D H Binh and Van Regemorter,J. Phys. B30, 2403 (1997)ADSGoogle Scholar
  11. [6]
    U Fano,Phys. Rev. A17, 93 (1978)ADSMathSciNetGoogle Scholar
  12. [7]
    F H Mies,Phys. Rev. A20, 1773 (1979)ADSGoogle Scholar
  13. [8]
    R O Esquivel, A N Tripathi, R P Sagar and V H Smith Jr.,J. Phys. B25, 2925 (1992)ADSGoogle Scholar
  14. [9]
    A Sarsa, F J Galvez and E Buendia,J. Phys. B32, 2245 (1999)ADSGoogle Scholar
  15. [10]
    B Williams,Compton scattering (McGraw Hill, New York, 1997)Google Scholar
  16. [11]
    R O Esquivel, A V Bunge and M A Nunez,Phys. Rev. A43, 3373 (1991)ADSGoogle Scholar
  17. [12]
    P Choudhury, B Talukdar and S K Adhikari,J. Phys. B32, 95 (1999)ADSGoogle Scholar
  18. [13]
    Y L Luke,Mathematical functions and their approximations (Academic Press, New York, 1975)MATHGoogle Scholar
  19. [14]
    T Koga, H Matsuyama, H Inomata, E Romera, J S Dehesa and A J Thakkar,J. Chem. Phys. 109, 1061 (1998)Google Scholar
  20. [15]
    R Benesch and V H Smith Jr.,Wave mechanics; The fifty years edited by W C Price, S S Chissick and T Ravensdale (Butterworths, London, 1973)Google Scholar
  21. [16]
    F S Ham, inSolid state physics — advances in research and applications edited by F Seitz and D Turnbull (Academic, New York, 1955)Google Scholar
  22. [17]
    E Clemmenti and C Roetti,At. Data Nucl. Data Tables 14, 478 (1974)CrossRefGoogle Scholar
  23. [18]
    B Talukdar, J Dutta and U Laha,J. Chem. Phys. 89, 3927 (1988)CrossRefADSGoogle Scholar
  24. [19]
    I Martin and G Simons,J. Chem. Phys. 62, 4799 (1975)CrossRefADSGoogle Scholar
  25. [19a]
    I Martin, J Karwovski and Bielinska-Waz,J. Phys. A33, 823 (2000)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  • Pranab Sarkar
    • 1
  • Anupam Sarkar
    • 2
  • S. N. Roy
    • 2
  • B. Talukdar
    • 2
  1. 1.Department of ChemistryVisva-Bharati UniversitySantiniketanIndia
  2. 2.Department of PhysicsVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations