, Volume 61, Issue 4, pp 707–724 | Cite as

Energy fluxes in helical magnetohydrodynamics and dynamo action

  • Mahendra K. Verma
Reasearch Articles


Renormalized viscosity, renormalized resistivity, and various energy fluxes are calculated for helical magnetohydrodynamics using perturbative field theory. The calculation is of firstorder in perturbation. Kinetic and magnetic helicities do not affect the renormalized parameters, but they induce an inverse cascade of magnetic energy. The sources for the large-scale magnetic field have been shown to be (1) energy flux from large-scale velocity field to large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years. Our field-theoretic calculations also reveal that the flux of magnetic helicity is backward, consistent with the earlier observations based on absolute equilibrium theory.


Dynamo magnetohydrodynamic turbulence field theory 


47.27.Gs 52.35.Ra 91.25.Cw 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H K Moffatt,Magnetic fields generation in electrically conducting fluids (Cambridge University Press, Cambridge, 1978)Google Scholar
  2. [2]
    F Krause and K H Rädler,Mean-field magnetohydrodynamics and dynamo theory (Pergamon Press, Oxford, 1980)MATHGoogle Scholar
  3. [3]
    M K Verma,Pramana - J. Phys. 61, 577 (2003); nlin.CD/0103033 (2002)CrossRefADSGoogle Scholar
  4. [4]
    M Steenbeck, F Krause and K-H Räadler,Z Naturforsh. 21a, 369 (1966)ADSGoogle Scholar
  5. [5]
    A Pouquet, U Frisch and J Léorat,J. Fluid Mech. 77, 321 (1976)MATHCrossRefADSGoogle Scholar
  6. [6]
    A V Gruzinov and P H Diamond,Phys. Rev. Lett. 72, 1651 (1994)CrossRefADSGoogle Scholar
  7. [7]
    G B Field, E G Blackman and H Chou,Astrophys. J. 513, 638 (1999)CrossRefADSGoogle Scholar
  8. [8]
    H Chou,Astrophys. J. 552, 803 (2000)CrossRefADSGoogle Scholar
  9. [9]
    A Basu and J K Bhattacharjee, cond-mat/9812090 (1998)Google Scholar
  10. [10]
    A Basu, nlin.CD/0208010 (2002)Google Scholar
  11. [11]
    A Brandenburg,Astrophys. J. 550, 824 (2001)Pramana - J. Phys., Vol. 61, No. 4, October 2003CrossRefADSGoogle Scholar
  12. [12]
    S Sridhar and P Goldreich,Astrophys. J. 432, 612 (1994)CrossRefADSGoogle Scholar
  13. [13]
    P Goldreich and S Sridhar,Astrophys. J. 438, 763 (1995)CrossRefADSGoogle Scholar
  14. [14]
    M K Verma,Phys. Plasma 6, 1455 (1999)CrossRefADSGoogle Scholar
  15. [15]
    M K Verma,Phys. Rev. E64, 26305 (2001)ADSGoogle Scholar
  16. [16]
    M K Verma,Phys. Plasma 8, 3945 (2001)CrossRefADSGoogle Scholar
  17. [17]
    M K Vermaet al, J. Geophys. Res. 101, 21619 (1996)CrossRefADSGoogle Scholar
  18. [18]
    W C Müller and D Biskamp,Phys. Rev. Lett. 84, 475 (2000)CrossRefADSGoogle Scholar
  19. [19]
    D Biskamp and W C Müller,Phys. Plasma 7, 4889 (2000)CrossRefADSGoogle Scholar
  20. [20]
    A Pouquet and G S Patterson,J. Fluid Mech. 85, 305 (1978)MATHCrossRefADSGoogle Scholar
  21. [21]
    P Frick and D Sokoloff,Phys. Rev. E57, 4155 (1998)ADSMathSciNetGoogle Scholar
  22. [22]
    G Dar, M K Verma and V Eswaran,Physica D157, 207 (2001)ADSGoogle Scholar
  23. [23]
    M Meneguzzi, U Frisch and A Pouquet,Phys. Rev. Lett. 47, 1060 (1981)CrossRefADSGoogle Scholar
  24. [24]
    R M Kulsrud and S W Anderson,Astrophys. J. 396, 606 (1992)CrossRefADSGoogle Scholar
  25. [25]
    U Frisch, A Pouquet, J Léorat and A Mazure,J. Fluid Mech. 68, 769 (1975)MATHCrossRefADSGoogle Scholar
  26. [26]
    W D McComb,The physics of fluid turbulence (Oxford University Press, Clarendon, 1990)Google Scholar
  27. [27]
    Y Zhou,Phys. Rev. A41, 5683 (1990)ADSGoogle Scholar
  28. [28]
    V Yakhot and S A Orszag,J. Sci. Comput. 1, 3 (1986)MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    D C Leslie, Development in the theory of turbulence (Oxford University Press, Clarendon, 1973)Google Scholar
  30. [30]
    R H Kraichnan,J. Fluid Mech. 59, 745 (1973)MATHCrossRefADSGoogle Scholar
  31. [31]
    A A Schekochihin, S A Boldyrev and R M Kulsrud, astro-ph/0103333 (2001)Google Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  • Mahendra K. Verma
    • 1
  1. 1.Department of PhysicsIndian Institute of TechnologyKanpurIndia

Personalised recommendations