Korean Journal of Chemical Engineering

, Volume 14, Issue 1, pp 1–7 | Cite as

Measurement of coal particle size and shape with concentrated coal-water mixtures

  • Dong-Jin Sung
  • Suk-Ho Kang


The behavior of concentrated coal-water mixtures having narrow particle size ssfractions of coal was investigated. The pulverized coal was fractionated into six distinct particle size ranges, i.e. -70+80, -80+120, -120+140,-140+200, -200+400 and -400 mesh sizes by using a series of sieves. Settling rates were determined as functions of solids concentration for suspensions in water of coal particles to establish the measurement of particle size and shape factor and to assess concentration effect upon the observed hindered settling rates. The settling rates were modelled using the Richardson-Zaki model with the exponent n variable to account for the nonspherical shape of the coal particles. The data was also correlated with the Michaels-Bolger model which explicitly account for the excess water which is dragged down along with the particles undergoing sedimentation. In addition, coal particles and suspensions were characterized by coal analysis, heating value, solid heat capacity and thermal conductivity, densities, maximum packing concentrations and pore size distributions.

Key words

Coal-Water Mixture Particle Size Shape Settling Rate Characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R., Hofer, L. and Bayer, J., “Surface Area of Coal”,Fuel,41, 559 (1962).Google Scholar
  2. Chong, Y. B., Ratkowsky, D. A. and Epstein, N., “Effect of Particle Shape on Hindered Settling in Creeping Flow”,Powder Technol.,23, 55 (1979).CrossRefGoogle Scholar
  3. Karuhn, R. F. and Berg, R. H., “Practical Aspects of Electrozone Size Analysis”, Particle Data Lab., Elmhurst, IL., 1982.Google Scholar
  4. McNown, J. S. and Malaika, J., “Effects of Particle Shape on Settling Velocity at Low Reynolds Numbers”,Trans. Amer. Geophys. Union,31, 74 (1950).Google Scholar
  5. Michaels, A. S. and Bolger, J. C., “Settling Rates and Sediment Volumes of Flocculated Kaolin Suspensions”,Ind. & Eng. Chem. Fund.,1, 24 (1962).CrossRefGoogle Scholar
  6. Pettyjohn, E. S. and Christiansen, E. B., “Effect of Particle Shape on Free Settling Rates of Isometric Particles”,Chem. Eng. Prog.,44, 157 (1948).Google Scholar
  7. Richardson, J. F. and Zaki, W. N., “Sedimentation and Fluidization: I”,Trans. Instn. Chem. Engrs.,32, 35 (1954).Google Scholar

Copyright information

© Korean Institute of Chemical Engineering 1997

Authors and Affiliations

  • Dong-Jin Sung
    • 1
  • Suk-Ho Kang
    • 1
  1. 1.School of Chem. Eng. & Technol.Yeungnam UniversityKyongsanKorea

Personalised recommendations