Advertisement

Korean Journal of Chemical Engineering

, Volume 13, Issue 5, pp 489–495 | Cite as

The study on the effective factors of hydrothermal synthesis in preparing high quality crystalline α-quartz powders

  • Kee Jeung Lee
  • Kyung Won Seo
  • Hyo Shin Yu
  • Young II Mok
Article

Abstract

In this study powders of high quality crystalline α-quartz were prepared by hydrothermal synthesis and parameters related to the preparation of the material were investigated. The degree of face development of the α-quartz crystal depended on the relative growth rates of a particular form that varies considerably with the degree of supersaturation. reaction temperature, concentration of mineralizers, and the amount of seed crystals in the feedstock. In the temperature range of 240–450°C and the pressure range of 100–300 atm, alkali hydroxides and alkali halides such as KOH. NaOH. Na2CO3, KF, and NaF were found to be the effective mineralizers. As the concentration of mineralizers increased, the particle size of crystalline α-quartz powders became smaller at lower reaction temperatures The fractional size distribution of synthetic crystal powders depended on the hydrothermal conditions. As the reaction time and the amount of seed crystals increased, the width of particle size distribution became narrower. The weighl mean particle size was in the range of 1 μm to 10 μm. The characterization of the products were carried out using XRD, SEM, PSA, FTIR, and Raman spectrometer.

Key words

Hydrothermal Synthesis α- Quartz Powder Mineralizer Seed Crystal Particle Size Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ban, J. S., Lee, K. J., Lee, C. K., Seo, K. W. and Mok, Y. I.,“Preparation of Corundum (α-A1203) by Hydrothermal Growing Process: I. A Study on the Effects of Reaction Temperature and Seed Crystal”,J. KACG,6(2), 129 (1996).Google Scholar
  2. Barclay, D. A., Lewise, D. J., Decker, L. B. and Carradine, W. R.,“Process for Growing Crystals, International Patent: WO 92/18671, 29, Oct., 1992.Google Scholar
  3. Brice, J. C.,“Crystal Growth Processes”, John Wiley and Sons, New York, 1986.Google Scholar
  4. Brinker, C. J., Clark, D. E. and Ulrich, D. R.,“Better Ceramics through Chemistry, Material Research Society, Pennsylvania, 1986.Google Scholar
  5. Brinker, C. J., Keefer, D. W., Schaefer, D. W. and Ashey, C. S., Sol-Gel Transition in Simple Silicates”,J. Non-Crystalline Solids,48, 47 (1982).CrossRefGoogle Scholar
  6. Byrappa, K., Handbook of Crystal Growth Vol. 2a-Bulk Crystal Growth”, North Holland, Amsterdam, 1994.Google Scholar
  7. Chernov, A. A., Modern Crystallography III”, Springer-Verlag, Berlin Heidelberg, 1984.Google Scholar
  8. Dawson, W. J.,“Hydrothermal Synthesis of Advanced Ceramic Powders”,Ceramic Bulletin,67(10), 1673 (1988).Google Scholar
  9. Elwell, D. and Scheel, H. J.,“Crystal Growth from High Temperature Solution, Academic Press, New York, 1975.Google Scholar
  10. Geiger, G.,“Powder Synthesis and Shape Forming of Advanced Ceramics”,Am. Ceram. Soc. Bull,74(8), 62 (1995).Google Scholar
  11. Ichinose, N., Introduction to Fine Ceramics, Ohmsha, Tokyo, 1983.Google Scholar
  12. Ikeda, T., Fundamentals of Piezoelectricity, Oxford Univ. Press, New York, 1990.Google Scholar
  13. Jung, S. T., Lee, K. J. and Seo, K. W., Studies on Hydrothermal Synthetic Conditions for Preparation of PZT Powders”,J. KACG,6(2), 254 (1996).Google Scholar
  14. Laudise, R. A. and Ballman, A. A.. Hydrothermal Synthesis of Sapphire”,J. Am. Chem. Soc,80, 2655 (1958).CrossRefGoogle Scholar
  15. Lee, K. J., Seo, K. W., Yu, H. S. and Mok, Y. I.,“Preparation of Fine Single Crystalline SiO2 Particle by Using the Hydrothermal Synthesis”, Proceedings of’95 KIChE Fall Meeting, Oct., 21 (1995a).Google Scholar
  16. Lee, K. J., Seo, K. W., Yu, H. S. and Mok, Y. I.,“Preparation of High Quality Crystal Quartz Powder-1. A Study on the Hydrothermal Reaction Conditions, Ajou Univ. Engineering Research Institute,18, 255, Suwon, Korea (1995b).Google Scholar
  17. Lias, N. C., Grudenski, E. E., Kolb, E., D. and Laudise, R. A.,“The Growth of High Acoustic Q Quartz at High Growth Rates”,J. Crystal Growth,18, 1 (1973).CrossRefGoogle Scholar
  18. Mersmann, A.,“Crystallization Technology Handbook”, Marcel Dekker, New York, 1994.Google Scholar
  19. Nogami, M. and Moriya, Y.,“Glass Formation through Hydrolysis of Si(OC2H2)4 with NH2OH and HC1 Solution”,Non-Crystalline Solids,37, 191 (1980).CrossRefGoogle Scholar
  20. Pamplin, B. R.,“Crystal Growth”, Pergamon Press, Oxford, 1975.Google Scholar
  21. Wold, A. and Dwight, K., “Solid Stale Chemistry”, Chapman & Hall, New York, 1993.Google Scholar
  22. Yoon, H. S., Park, H. S. and Kim, S. H.,“A Kinetic Study on the Hydrolysis and Condensation of TEOS in Basic Condition by Sol-Gel Method”,HAWHAK KONGHAK,32(4), 557 (1994).Google Scholar

Copyright information

© Korean Institute of Chemical Engineering 1996

Authors and Affiliations

  • Kee Jeung Lee
    • 1
  • Kyung Won Seo
    • 1
  • Hyo Shin Yu
    • 1
    • 2
  • Young II Mok
    • 1
  1. 1.Department of Chemical EngineeringAjou UniversitySuwonKorea
  2. 2.Korea Institute of Geology, Mining & Materials, Resources Utilization & Materials DivisionTaejonKorea

Personalised recommendations