Korean Journal of Chemical Engineering

, Volume 23, Issue 5, pp 704–713 | Cite as

Double-bond depletion of soybean oil triglycerides with KMnO4/H2O in dense carbon dioxide

  • Selen Aydoğan
  • Selim Küsefoğlu
  • Uğur Akmang
  • öner HortaÇsu


Soybean oil triglycerides (SOT) can be used for the synthesis of rigid polymers. This research investigates the potential of using dense (sub/supercritical) CO2 in the reaction medium for the addition of functional groups to SOT. As an alternative and novel method, the reaction of SOT with KMnO4 in the presence of water and dense CO2 is presented. Dense CO2 is utilized to bring the soybean oil and aqueous KMnO4 solution into contact. Experiments are done at 10,25, 34.5, 50 °C and 2.5, 5, 7, 11, 16 MPa. Effects of temperature, pressure, NaHCO3 addition, and KMnO4 amount on the conversion (depletion by bond opening) of soybean-triglyceride double bonds (STDB) are investigated. The highest STDB conversions, about 40%, are obtained at the near-critical conditions of CO2. The addition of NaHCO3 enhances the conversion; one mole of NaHCO3 per mole of KMnO4 gives the highest benefit. Increasing KMnO4 up to 10% increases the conversion of STDB.

Key words

Sub/Supercritical Carbon Dioxide Reaction Soybean Oil Triglyceride KMnO4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akgerman, A. and Lin, B.,Homogeneous and catalytic reactions in supercritical fluids, in: Bertucco, A., ed., CISF-99 5th Conference on Supercritical Fluids and Their Applications, 289 (1999).Google Scholar
  2. Arunajatesan, V., Subramaniam, B., Hutchenson, K. W. and Herkes, F. E.,“Fixed-bed hydrogenation of organic compounds in supercritical carbon dioxide;”Chem. Eng. Sci.,56, 1363 (2001).CrossRefGoogle Scholar
  3. Aydoan, S.,Hydroxylation of soybean triglycerides in sub/supercritical carbon dioxide, M.Sc. Thesis, BoğaziÇi University, İ stanbul, Turkey, 2001.Google Scholar
  4. Baiker, A.,“Supercritical fluids in heterogeneous catalysis,”Chem. Rev.,99, 453(1999).CrossRefGoogle Scholar
  5. Biermann, U., Friedt, W., Lang, S., Lühs, W., Machmüller, G., Metzger, J. O., Rüschgen Klass, M., Schafer, H. J. and Schneider, M. P.,“New syntheses with oils and fats as renewable raw materials for the chemical industry,”Angew. Chem. Int. Ed.,39, 2206 (2000).CrossRefGoogle Scholar
  6. Brennecke, J. F.,“Solvents: Molecular trees for green chemistry,”Nature,389, 333 (1997).CrossRefGoogle Scholar
  7. Buback, M.,Kinetics and selectivity of chemical processes in fluid phases, in: Kiran, E. and Levelt Sengers, J. M. H., eds., Supercritical Fluids, Kluwer Academic Publishers, Netherlands, 481 (1994).Google Scholar
  8. Clifford, A. A.,Reactions in supercritical fluids, in: Kiran, E. and Levelt Sengers, J. M. H., eds., Supercritical Fluids, Kluwer Academic Publishers, Netherlands, 449 (1994).Google Scholar
  9. Cocero, M. J., Gonzales, S., Perez, S. and Alonso, E.,“Supercritical extraction of unsaturated products. Degradation of Β-carotene in supercritical extraction processes,”J. Supercrit. Fluids,19, 39 (2000).CrossRefGoogle Scholar
  10. Dinjus, E., Fornika, R. and Scholz, M.,Organic chemistry in supercritical fluids, in: van Eldik, R. and Hubbard, C. D., eds., Chemistry Under Extreme or Non-Classical Conditions, Wiley, New York, 219 (1997).Google Scholar
  11. Eckert, C. A., Ziger, D. H., Johnston, K. P. and Kim, S.,“Solute partial molar volumes in supercritical fluids,”J. Phys. Chem.,90, 2738 (1986).CrossRefGoogle Scholar
  12. Eckert, C. A., Knutson, B. L. and Debenedetti, P. G.,“Supercritical fluids as solvents for chemical and material processing,”Nature,383, 313 (1996).CrossRefGoogle Scholar
  13. Eggers, R.,“High pressure extraction of oil seed,”JAOCS,62, 1222 (1985).CrossRefGoogle Scholar
  14. Ellington, J. B., Park, K. M. and Brennecke, J. F.,“Effect of local composition enhancements on the esterification of phtalic anhyride with methanol in supercritical carbon dioxide,”Ind. Eng. Chem. Res.,33, 965 (1994).CrossRefGoogle Scholar
  15. Fischer, A., Mallat, T. and Baiker, A.,“Synthesis of 1,4-diaminocyclohexane in supercritical ammonia,”J. Catal.,182, 289 (1999).CrossRefGoogle Scholar
  16. Gray, W. K., Smail, F. R., Hitzler, M. G., Ross, S. K. and Poliakoff, M., “The continuous acid-catalyzed dehydration of alcohols in supercritical fluids: A new approach to the cleaner synthesis of acetals, ketals, and ethers with high selectivity,”J.Am. Chem. Soc.,121, 10711 (1999).CrossRefGoogle Scholar
  17. Hadida, S., Super, M. S., Beckman, E. J. and Curran, D. P.,“Radical reactions with alkyl and fluoroalkyl (fluorous) tin hydride reagents in supercritical carbon dioxide;J. Am. Chem. Soc.,119, 7406 (1997).CrossRefGoogle Scholar
  18. Hautal, W. H.,“Advances with supercritical fluids [Review],”Chemosphere,43, 123 (2001).CrossRefGoogle Scholar
  19. Ikushima, Y., Saito, N. and Arai, M.,“Supercritical carbon dioxide as reaction medium: Examination of its solvent effects in the near-critical region,”J. Phys. Chem.,96, 2293 (1992).CrossRefGoogle Scholar
  20. Ikushima, Y., Saito, N., Hatakede, K. and Sato, O.,“Promotion of a lipase-catalyzed esterification in supercritical carbon dioxide in the near-critical region,”Chem. Eng. Sci.,51, 2817 (1996).CrossRefGoogle Scholar
  21. Jessop, P. G., Ikariya, T. and Noyori, R.,“Homogeneous catalytic hydrogenation of supercritical carbon dioxide,”Nature,368, 231 (1994).CrossRefGoogle Scholar
  22. Jessop, P. G., Hsiao, Y., Ikariya, T. and Noyori, R.,“Homogeneous catalysis in supercritical fluids: Hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides,”J. Am. Chem. Soc.,118, 344 (1996).CrossRefGoogle Scholar
  23. Jessop, P. G. and Leitner, W.,Supercritical fluids as media for chemical reactions in: Jessop, P. G. and Leitner, W., eds., Chemical Synthesis Using Supercritical Fluids, Wiley-VCH, New York, 1 (1999).Google Scholar
  24. Karakap, G., Doğu, T. and Somer, T. G.,“Reactivity of CO2 during thermal cracking of heavy paraffins under supercritical conditions,”Ind. Eng. Chem. Res.,36, 4445 (1997).CrossRefGoogle Scholar
  25. Knutson, B. L., Dillow, A. K., Liotta, C. L. and Eckert, C. A.,Kinetics of a diels-alder reaction in supercritical propane, in: Hutchenson, K. W. and Foster, N. R., eds., Innovations in Supercritical Fluids, ACS Symposium Series 608, American Chemical Society: Washington, 166 (1995).Google Scholar
  26. Lapworth, A. and Mottram, E. N.,“Oxidation products of oleic acid, Part 1. Conversion of oleic acid into dihydroxystearic acid and the determination of the higher saturated acids in mixed acids from natural sources,”J. Chem. Soc.,127, 1628 (1925).Google Scholar
  27. Lee, B. M., Veriansyah, B., Kim, S. H., Kim, J. D. and Lee, Y. W., “Total organic carbon disappearance kinetics for supercritical water oxidation of dimethyl methylphospate used as a chemical agent simulant,”Korean J. Chem. Eng.,22, 579 (2005a).CrossRefGoogle Scholar
  28. Lee, H. C., In, J. H., Kim, J. H., Hwang, K. Y. and Lee, C. H.,“Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation,”Korean J. Chem. Eng.,22, 882 (2005b).CrossRefGoogle Scholar
  29. Marr, R. and Gamse, T.,“Use of supercritical fluids for different processes including new developments-A review,”Chem. Eng. Proc. 39, 19(2000).CrossRefGoogle Scholar
  30. Morrison, R. T., Boyd, R. N.,Organic chemistry, Prentice Hall, New Jersey (1992).Google Scholar
  31. Nam, S. C. and Kim, G. J.,“Characterization of barium hexaferrite produced by varying the reaction parameters at the mixing-points in a supercritical water crystallization process,”Korean J. Chem. Eng. 21, 582 (2004).CrossRefGoogle Scholar
  32. Oliveira, D. and Oliveira, J. V.,“Enzymatic alcoholysis of palm kernel oil inn-hexane and SCCO2,”J. Supercrit. Fluids,19, 141 (2001).CrossRefGoogle Scholar
  33. Palo, D. R. and Erkey, C.,“Homogeneous catalytic hydroformulation of 1-octene in supercritical carbon dioxide using a novel rhodium catalyst with fluorinated arylphosphine ligands,”Ind. Eng. Chem. Res.,37, 4203 (1998).CrossRefGoogle Scholar
  34. Park, C. Y., Ryu, Y. W. and Kim, C.,“Kinetics and rate of enzymatic hydrolysis of cellulose in supercritical carbon dioxide,”Korean J. Chem. Eng.,18, 475 (2001).CrossRefGoogle Scholar
  35. Park, J. H. and Park, S. D.,“Kinetics of cellobiose decomposition under subcritical and supercritical water in continuous flow system,”Korean J. Chem. Eng.,19, 960 (2002).CrossRefGoogle Scholar
  36. Phiong, H.-S., Lucien, F. P. and Adesina, A. A.,“Three-phase catalytic hydrogenation of α-methylstyrene in supercritical carbon dioxide,”J. Supercrit. Fluids,25, 155 (2003).CrossRefGoogle Scholar
  37. Poliakoff, M., George, M. W. and Howdle, S. M.,Inorganic and related chemical reactions in supercritical fluids, in: van Eldik, R. and Hubbard, C. D., eds., Chemistry Under Extreme or Non-Classical Conditions, Wiley, New York, 189 (1997).Google Scholar
  38. Poliakoff, M. and George, M. W.,Chemical reactions as a continuous process in supercritical fluids, in: Perrut, M. and Subra, P. eds., Proceedings of the 5th Meeting on Supercritical Fluids, Materials and Natural Products Processing, Tome 2: Natural Products, Advanced Processes Reactions and Various, 833 (1998).Google Scholar
  39. Renslo, A. R., Weinstein, R. D., Tester, J. W. and Danheiser, R. L.,“Concerning the regiochemical course of the diels-alder reaction in supercritical carbon dioxide,”J. Org. Chem.,62, 4530 (1997).CrossRefGoogle Scholar
  40. Rezaei, K. and Temelli, F.,“On-line extraction of canola oil using immo-bilized lipase in supercritical CO2,”J. Supercrit. Fluids,19, 263 (2001).CrossRefGoogle Scholar
  41. Savage, P. E., Gopalan, S., Mizan, T. I., Martino, C. J. and Brock, E. E., “Reactions at supercritical conditions: Applications and fundamental,”AIChE J.,41, 1723 (1995).CrossRefGoogle Scholar
  42. Sherman, J., Chin, B., Huibers, P. D. T., Galcia-Valls, R. and Hatton, T. A.,“Solvent replacement for green processing,”Environ. Health Perspect.,106, 253 (1998).CrossRefGoogle Scholar
  43. Srinivas, P. and Mukhopadhyay, M.,“Oxidation of cyclohexane in supercritical carbon dioxide medium,”Ind. Eng. Chem. Res.,33, 3118 (1994).CrossRefGoogle Scholar
  44. Stahl, E., Quirin, K. W. and Gerard, D.,Dense gases for extraction and refining, Translation from the German Edition by Ashworth M. R. F., Springer-Verlag, Berlin, (1988).Google Scholar
  45. Tegetmeier, A., Dittmar, D., Fredenhagen, A. and Eggers, R.,“Density and volume of water and triglyceride mixtures in contact with carbon dioxide,”Chem. Eng. Proc.,39, 399 (2000).CrossRefGoogle Scholar
  46. Wai, C. M., Hunt, F., Ji, M. and Chen, X.,“Chemical reactions in supercritical carbon dioxide,”J. Chem. Educ.,75, 1641 (1998).CrossRefGoogle Scholar
  47. Wang, S. and Keinzle, F.,“The syntheses of pharmaceutical intermediates in supercritical fluids,”Ind.Eng. Chem. Res.,39, 4487 (2000).CrossRefGoogle Scholar
  48. Weinstein, R. D., Renslo, A. R., Danheiser, R. L., Harris, J. G. and Tester, J. W.,“Kinetic correlation of diels-alder reactions in supercritical carbon dioxide,”J. Phys. Chem.,100, 12337 (1996).CrossRefGoogle Scholar
  49. Weinstein, R. D., Renslo, A. R., Danheiser, R. L. and Tester, J. W.,“Silica-promoted diels-alder reactions in carbon dioxide form gaseous to supercritical conditions,”J. Phys. Chem. B,103, 2878 (1999).CrossRefGoogle Scholar
  50. Wiebe, R.,“The binary system carbon dioxide-water under pressure,”Chem. Rev.,29, 475 (1941).CrossRefGoogle Scholar
  51. Wiebe, R. and Gaddy, V. L.,“The solubility of carbon dioxide in water at various temperatures from 12 to 40 ‡C and at pressures to 500 atmospheres. Critical phenomena,”J.Am. Chem. Soc.,62, 815 (1940).CrossRefGoogle Scholar
  52. Wool, R., Küsefolu, S., Palmese, G., Khot, S. and Zhao, R.,High modulus polymers and composites from plant oils, U.S. Patent 6,121,398, Sep. 19 (2000).Google Scholar

Copyright information

© Korean Institute of Chemical Engineering 2006

Authors and Affiliations

  • Selen Aydoğan
    • 1
  • Selim Küsefoğlu
    • 2
  • Uğur Akmang
    • 1
  • öner HortaÇsu
    • 1
  1. 1.Department of Chemical EngineeringBoğaziÇi UniversityIstanbulTurkey
  2. 2.Department of ChemistryBoğaziÇi UniversityIstanbulTurkey

Personalised recommendations