Korean Journal of Chemical Engineering

, Volume 22, Issue 6, pp 949–959 | Cite as

An extension of the group contribution method for estimating thermodynamic and transport properties. Part III. Noble gases

  • Seung-Kyo Oh


Earlier work on the group contribution method applied to the Kihara potential is extended to noble gases for the estimation of second virial coefficients, dilute gas viscosities and diffusivities with a single set of gas group parameters. Group parameters are determined when second virial coefficient and viscosity data of pure gases are satisfactorily fitted within the experimental uncertainties. Parameters for gas groups (He, Ne, Ar, Kr and Xe) are found to provide good predictions of mixture properties: second virial cross coefficients, mixture viscosities, and binary diffusion coefficients. Application of the model shows that second virial coefficient data are represented with good results comparable to the values by means of the corresponding states correlation. The reliability of the present model in viscosity predictions is proved by comparison with the Lucas method. Prediction results of diffusivity are in excellent agreement with literature data and compare well with values obtained by means of the Fuller method.

Key words

Theory Group Contribution Kihara Potential Noble Gas Second Virial Coefficient Viscosity Diffusivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bondi, A., “van der Waals Volumes and Radii,”J. Phys. Chem.,68(3), 441 (1964).CrossRefGoogle Scholar
  2. Byrne, M. A., Jones, M. R. and Staveley, L. A. K., “Second Virial Co-efficient of Argon, Krypton and Methane and their Binary Mixtures,”Trans. Faraday Soc.,64, 1747 (1968).CrossRefGoogle Scholar
  3. Campbell, S. W., “Application of the Group Contribution Concept to the Kihara Potential for the Calculation of Second Virial Coefficients,”Fluid Phase Equilibria,47, 47 (1989).CrossRefGoogle Scholar
  4. Chapman, S. and Cowling, T. G.,The Mathematical Theory ofNonuniform Gases, 3rd ed., Cambridge University Press, New York (1970).Google Scholar
  5. Derr, E. L. and Deal, C. H., “Analytical Solution of Groups: Correlation of Activity Coefficients Through Structural Group Parameters,”Inst. Chem. Eng. Symp. Ser.,32, 44 (1969).Google Scholar
  6. Dymond, J. H. and Alder, B. J., “Pair Potential for Argon,”J. Chem. Phys.,51(1), 309 (1969).CrossRefGoogle Scholar
  7. Dymond, J. H. and Smith, E. B.,The Virial Coefficients of Pure Gases and Mixtures-A Critical Compilation, Clarendon Press, Oxford (1980).Google Scholar
  8. Fredenslund, A., Jones, R. L. and Prausnitz, J. M., “Group-contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures,”AIChE J.,21(6), 1086 (1975).CrossRefGoogle Scholar
  9. Fuller, E. N., Schettler, P. D. and Giddings, J. C., “New Method for Prediction of Binary Gas-Phase Diffusion Coefficients,”Ind. Eng. Chem.,58(5), 18(1966).CrossRefGoogle Scholar
  10. Georgeton, G. K. and Teja, A. S., “A group Contribution Equation of State Based on the Simplified Perturbed Hard Chain Theory,”Ind. Eng. Chem. Res.,27, 657 (1988).CrossRefGoogle Scholar
  11. Hellemans, J. M., Kestin, J. and Ro, S. T., “Viscosity of Binary Mixtures of Nitrogen with Argon and Krypton,”J. Chem. Phys.,57(9), 4038 (1972).CrossRefGoogle Scholar
  12. Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B.,Molecular Theory of Gases and Liquids, Wiley, New York (1954)Google Scholar
  13. Holsen, J.N. and Strunk, M.R.,Ind. Eng. Chem. Fund.,3, 143, (1964).CrossRefGoogle Scholar
  14. Humphreys, A. E. and Mason, E. A., “Intermolecular Forces: Thermal Diffusion and Diffusion in Ar-Kr,”The Physics of Fluids,13(1), 65 (1970).CrossRefGoogle Scholar
  15. IMSL,IMSL STAT/LIBRARY: Regression, IMSL, Houston (1994).Google Scholar
  16. Iwasaki, H. and Kestin, J., “The Viscosity of Argon-Helium Mixtures,”Physica,29, 1345 (1963).CrossRefGoogle Scholar
  17. Jin, G., Walsh, J. M. and Donahue, M. D., “A Group-contribution Correlation for Predicting Thermodynamic Properties with the Perturbed-Soft-Chain Theory,”Fluid Phase Equilibria,31, 123 (1986).CrossRefGoogle Scholar
  18. Kalelkar, A. S. and Kestin, J., “Viscosity of He-Ar and He-Kr Binary Mixtures in the Temperature Range 25–700 °C,”J. Chem. Phys.,52(8), 4248 (1970).CrossRefGoogle Scholar
  19. Kestin, J. and Nagashima, A., “Viscosity of Neon-Argon Mixtures at 20 °C and 30 °C,”J. Chem. Phys.,40(12), 3648 (1964).CrossRefGoogle Scholar
  20. Kestin, J., Kobayashi, Y. and Wood, R. T., “The Viscosity of Four Binary, Gases Mixtures at 20°C and 30oC,”Physica,32, 1065 (1966).CrossRefGoogle Scholar
  21. Kestin, J. and Yata, J., “Viscosity and Diffusion Coefficient of Six Binary Mixtures,”J. Chem. Phys.,49(11), 4780 (1968).CrossRefGoogle Scholar
  22. Kestin, J., Wakeham, W. and Watanabe, K., “Viscosity, Thermal Conductivity, and Diffusion Coefficient of Ar-He and Ar-Kr Mixtures in the Temperature Range 25–700 °C,”J. Chem. Phys.,53(10), 3773 (1970).CrossRefGoogle Scholar
  23. Kestin, J., Paykoc, E. E. and Sengers, J. V., “On the Density Expansion for Viscosity in Gases,”Physica,54, 1 (1971).CrossRefGoogle Scholar
  24. Kestin, J., Ro, S. T. and Wakeham, W. A., “Viscosity of Binary Gasous Mixtures Helium-Nitrogen,”J. Chem. Phys.,56(8), 4036 (1972a).CrossRefGoogle Scholar
  25. Kestin, J., Ro, S. T. and Wakeham, W. A., “Viscosity of Binary Gaseous Mixtures Neon-Krypton,”J. Chem. Phys.,56(8), 4086 (1972b).CrossRefGoogle Scholar
  26. Kestin, J., Ro, S. T. and Wakeham, W. A., “Viscosity of the Noble Gases in the Temperature Range 25–7,900 °C,”J. Chem. Phys.,56(8), 4119 (1972c).CrossRefGoogle Scholar
  27. Kestin, J., Ro, S. T. and Wakeham, W. A., “Viscosity of the Binary Mixtures He-Ne and He-N2 in the Temperature Range 25–700 °C,”J. Chem. Phys.,56(12), 5837 (1972d).CrossRefGoogle Scholar
  28. Kestin, J. and Ro, S. T., “The Viscosity of Nine Binary and Two Ternary Mixtures of Gases at Low Density,”Ber. Bunsen-Ges. Physik. Chem.,20, 20 (1974).Google Scholar
  29. Kestin, J. and Ro, S. T., “The Viscosity and Diffusion Coefficient of Binary Mixtures with Ar, N2, CO2,”Ber. Bunsen-Ges. Phys. Chem.,86, 948(1982).Google Scholar
  30. Kestin, J., Knierim, K., Mason, E. A., Najafi, B., Ro, S. T. and Waldman, M., “Equilibrium and Transport Properties of the Noble Gases and Their Mixtures at Low Density,”J. Phys. Chem. Ref. Data,13(1), 229 (1984).CrossRefGoogle Scholar
  31. Kihara, T.,Intermolecular Forces, Wiley, New York (1978).Google Scholar
  32. Lide, D. R.,Handbook of Chemistry and Physics, 76th Ed., CRC Press (1995).Google Scholar
  33. Lucas, K.,Phase Equilibria and Fluid Properties in the Chemical Industry, Dechema, Frankfurt (1980).Google Scholar
  34. O’Connell, J. P. and Prausnitz, J. M.,Advances in Thermophysical Properties at Extreme Temperatures and Pressures, 3rd Symposium of Thermophysical Properties, ASME, New York (1965).Google Scholar
  35. O’Connell, J. P., Personal Communication (1988).Google Scholar
  36. Oh, S.-K.,A Group Interaction Model for Second Virial Coefficients of Pure Gases and Mixtures, M.S. Thesis, University of S. Florida, Tampa (1989).Google Scholar
  37. Oh, S.-K. and Campbell, S. W., “A Group Contribution Model for Thermodynamic and Transport Properties of Dilute Gases,”Fluid Phase Equilibria,129, 69 (1997).CrossRefGoogle Scholar
  38. Oh, S.-K. and Sim, C.-H., “An Extension of the Group Contribution Model for Thermodynamic and Transport Properties of Dilute Gases,”KoreanJ. Chem. Eng.,19, 843 (2002).CrossRefGoogle Scholar
  39. Oh, S.-K. and Park, K.-H., “An Extension of the Group Contribution Method for Estimating Thermodynamic and Transport Properties: Part II. Polyatomic Gases (F2, Cl2, CS2, H2S, NO and N2O),”Korean J. Chem. Eng.,22, 268 (2005).CrossRefGoogle Scholar
  40. Poling, B. E., Prausnitz, J. M. and O’Connell, J. P.,The Properties of Gases and Liquids, 5th ed., McGraw Hill, NY (2000).Google Scholar
  41. Prausnitz, J. M., Lichtenthaler, R. N. and de Azevedo, E. G.,Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice Hall (1999).Google Scholar
  42. Rietveld, A. O., Van Itterbeek, A. and Van Den Berg, G. J., “Measurements on the Viscosity of Mixtures of Helium and Argon,”Physica,19, 517(1953).CrossRefGoogle Scholar
  43. Rietveld, A. O., Van Itterbeek, A. and Van Den Berg, G. J., “Measurements on the Viscosity of Mixtures of Neon ans Argon,”Physica,22, 785 (1956).CrossRefGoogle Scholar
  44. Rietveld, A. O., Van Itterbeek, A. and Velds, C. A., “Viscosity of Binary Mixtures of Hydrogen Isotopes and Mixtures of Helium and Neon,”Physica,25, 205 (1959).CrossRefGoogle Scholar
  45. Seager, S. L., Geertson, L. R., Giddings, J. C., “Temperature Dependence of Gas and Vapor Diffusion Coefficients,”J. Chem. Eng. Data,8, 168(1963).CrossRefGoogle Scholar
  46. Strehlow, R. A.,J. Chem. Eng. Data,21, 2101 (1953).Google Scholar
  47. Strehlow, R. A.,J. Chem. Eng. Data,31, 519 (1959).Google Scholar
  48. Saxena, S. C. and Mason, E. A., “Thermal Diffusion and the Approach to the State in Gases: II,”Mol. Phys.,2, 379 (1959).CrossRefGoogle Scholar
  49. Stephan, K. and Lucas, K.,Viscosity of Dense Fluids, Plenum Press, New York (1979).Google Scholar
  50. Tee, L. S., Gotoh, S. and Stewart, W. E., “Molecular Parameters for Normal Fluids. Kihara Potential with Spherical Core,”Ind., Eng. Chem. Fund.,5, 363 (1966).CrossRefGoogle Scholar
  51. Thornton, E. and Baker, W. A. D., “Viscosity and Thermal Conductivity of Binary Gas Mixtures: Argon-Neon, Argon-Helium and Neon-Helium,”Proc. Phys. Soc.,80, 1171 (1962).CrossRefGoogle Scholar
  52. Thornton, E., “Viscosity and Thermal Conductivity of Binary Gas Mixtures: Krypton-Argon, Krypton-Neon and Krypton-Helium,”Proc. Phys. Soc.,77, 1166 (1960a).CrossRefGoogle Scholar
  53. Thornton, E., “Viscosity and Thermal Conductivity of Binary Gas Mixtures: Xenon-Helium, Xenon-Neon and Xenon-Argon,”Proc. Phys. Soc.,76, 104 (1960b).CrossRefGoogle Scholar
  54. Tsonopoulos, C., Dymond, J. M. and Szafranski, A. M., “Second Virial Coefficients of Normal Alkanes, Linear 1-Alkanols and Their Binaries,”Pure & Appl. Chem.,61(6), 1387 (1989).Google Scholar
  55. Tsonopoulos, C. and Dymond, J. H., “Second Virial Coefficients ofNormal Alkanes, Linear 1-Alkanols (and Water), Alkyl Ethers, and TheirMixtures,”Fluid Phase Equilibria,133, 11 (1997).CrossRefGoogle Scholar
  56. Tsonopoulos, C., “An Empirical Correlation of Second Virial Coefficients,”AIChE J.,20(2), 263 (1974).CrossRefGoogle Scholar
  57. van Heijningen, R. J. J., Harpe, J. P. and Beenakker, J. J. M., “Determination of the Duffusion Coefficients of Binary Mixtures of the Noble Gases As a Function of Temperature and Concentration,”Physica,38, 1 (1968).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2005

Authors and Affiliations

  1. 1.Chemical and Biochemical Engineering DepartmentKon-Yang UniversityChungnamKorea

Personalised recommendations