Korean Journal of Chemical Engineering

, Volume 18, Issue 6, pp 796–801 | Cite as

A stochastic analysis of the flow of two immiscible fluids in porous media: The case when the viscosities of the fluids are equal

  • Kyung-Hoe Kim
  • Chan-Hong Chung


A new stochastic theory is developed to explain the flow of two immiscible fluids in porous medium when the viscosity difference between two fluids is zero. In an individual micropore the radius of curvature of the interface separating the fluids is assumed constant and flow is modeled by the random jumping of microscopic interfaces. A one dimensional model composed of an array of parallel capillary tubes of constant radius is analyzed in detail. For the case in which two fluids have equal viscosity an analytical solution is obtained. The fluid displacement process is Fickian and dispersion is described in terms of a diffusion or spreading constant.

Key words

Stochastic Analysis Immiscible Fluids Porous Media Microscopic Interfaces Fickian Dispersion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubert, W. G., “Fate and Transport of Low pH Hazardous Materials After Deep Well Disposal”, Ph.D. Dissertation, Louisiana State University, Baton Rouge, Louisiana (1986).Google Scholar
  2. Broadbent, S. R. and Hammersley, J. M., “Percolation Processes”,Cambridge Philosophical Society Proceedings,53, 629 (1957).CrossRefGoogle Scholar
  3. Chandler, R., Koplik, J., Lerman, K. and Willemsen, J. F., “Capillary Displacement and Percolation in Porous Media”,J. Fluid Mech.,119, 249 (1982).CrossRefGoogle Scholar
  4. Chen, J.-D., “Some Mechanisms of Immiscible Fluid Displacement in Small Networks”,J. Colloid Interface Sci.,110, 488 (1986).CrossRefGoogle Scholar
  5. Chen, J.-D. and Koplik, “Immiscible Fluid Displacement in Small Networks”,J. Colloid Interface Sci.,108, 304 (1985).CrossRefGoogle Scholar
  6. Chun, M. S., Park, O. O. and Kim, J. K., “Flow and Dynamic Behavior of Dilute Polymer Solutions in Hydrodynamic Chromatography”,Korean J. Chem. Eng,7, 126 (1990).CrossRefGoogle Scholar
  7. Chuoke, R. L., VanMeurs, P. and Van derPoel, C, “The Instability of Slow, Immiscible, Viscous Liquid-Liquid Displacements in Permeable Media”,Trans. AIME,216, 188 (1959).Google Scholar
  8. DeGermes, P. and Guyon, E, “Lois generales pour I’ injection d’un fluide dans un milien poreux aléatoire”,J. Mec,17, 403 (1978).Google Scholar
  9. Dussan, V. E. B., “The Moving Contact Line: the Slip Boundary Condition”,J. Fluid Mech.,77, 665 (1976).CrossRefGoogle Scholar
  10. Gerstl, Z., Chen., Y., Migelgrin, U. and Yaron, B., “Toxic Organic Chemicals in Porous Media”, Springer-Verlag, New York (1989).Google Scholar
  11. Kim, Y. H. and Lee, E. K., “Comparison of Axial and Radial Flow Chromatography on Protein Separation Speed and Resolution”,Korean J. Chem. Eng,13, 466 (1996).CrossRefGoogle Scholar
  12. Greenkorn, R. A., “Flow Phenomena in Porous Media”, Marcel Dekker, Inc., New York (1983).Google Scholar
  13. Larson, R. G., Scriven, L. E. and Davis, H. T., “Percolation Theory of Two Phase Flow in Porous Media”,Chem. Eng. Sci.,36, 57 (1981).CrossRefGoogle Scholar
  14. Lenormand, R. and Zarcone, C, “Invasion Percolation in an Etched Network: Measurement of a Fractal Dimension”,Phys. Revu. Let,54, 2226 (1985).CrossRefGoogle Scholar
  15. Lesage, S. and Jackson, R. E., eds., “Groundwater Contamination and Analysis at Hazardous Waste Site”, Marcel Dekker, Inc., New York (1992).Google Scholar
  16. Ngan, C. and Dussan, V. E. B., “On the Nature of the Dynamic Contact Angle: an Experimental Study”,J. Fluid Mech.,118, 27 (1982).CrossRefGoogle Scholar
  17. Nittman, J., Daccord, G. and Stanley, H. E., “Fractal Growth of Viscous Fingers: Quantitative Characterization of a Fluid Instability”,Nature,314(14), 141 (1985).CrossRefGoogle Scholar
  18. Noonan, D. C, Glynn, W. K. and Miller, M. E., “Enhance Performance of Soil Vapor Extraction”,Chem. Eng. Prog.,June, 55 (1993).Google Scholar
  19. Paterson, L., “Diffusion-Limited Aggregation and Two-Fluid Displacements in Porous Media”,Phys. Rev. Lett.,52(18), 1621 (1984).CrossRefGoogle Scholar
  20. Saffman, P. and Taylor, G. I., “The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid”,Qart Proc. Roy. Soc.,A245, 312 (1958).CrossRefGoogle Scholar
  21. Saffman, P. and Taylor, G. I., “A Note on the Motion of Bubbles in a Hele-Shaw Cell and Porous Medium”,Qart. J. Mech. Appl. Math,12, 265 (1959).CrossRefGoogle Scholar
  22. Wang, S., “Computer Assisted Tomography and Its Application in the Study of Multiphase Flow Through Porous Media”, Ph. D. Dissertation, Columbia University, New York (1983).Google Scholar
  23. Wilkinson, D. and Willemsen, J. F., “Invasion Percolation: a New from of Percolation Theory”,J. Phys. A,16, 3365 (1983).CrossRefGoogle Scholar
  24. Willemsen, J. F., “Flow Through Porous Materials”, Schlemberger-Doll Research Preprint (1983).Google Scholar
  25. Witten, T. A. and Sander, L. M., “Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon”,Phys. Rev. Lett.,47, 1400 (1981).CrossRefGoogle Scholar
  26. Witten, T. A. and Sander, L. M., “Diffusion-Limited Aggregation”,Phys, Rev. 5, 27, 5686 (1983).Google Scholar
  27. Yoon, D. Y, Kim, D. S. and Choi, C. K., “Convective Instability in Packed Beds with Internal Heat Sources and Throughflow”,Korean J. Chem. Eng,15, 341 (1998).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2001

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTaegu UniversityKyungbukKorea

Personalised recommendations