Skip to main content
Log in

A frequency-dependent surfactant bridge model for the electrorheological behaviors of surfactant-activated suspensions

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In surfactant-activated electrorheological (ER) suspensions, the ER response shows linear ER behavior (Τ∞E 2o at small surfactant concentrations and nonlinear ER behavior (Τ∞E no ,n>2) at large surfactant concentrations. A surfactant bridge model was proposed to explain the nonlinear ER behavior at large surfactant concentrations with some assumptions. The proposed model successfully predicted the qualitative nonlinear ER behavior of surfactant-activated ER suspensions at large surfactant concentrations. Here, the surfactant bridge model is expanded to predict the electric field frequency dependent ER behavior of surfactant-activated ER suspensions. The developed surfactant bridge model can predict both the linear ER behavior at small surfactant concentrations and the nonlinear ER behavior at large surfactant concentrations. Furthermore, this model can predict two different types of the electric field frequency dependent ER behaviors of surfactant-activated ER suspensions, which depend on the amount of surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Block, H. and Kelly, J. P., “Electro-rheology,”J. Phys. D: Appl. Phys.,21, 1661 (1988).

    Article  CAS  Google Scholar 

  • Chin, B. D. and Park, O. O., “Electrorheological Response of Particulate Suspensions and Emulsions in a Small-strain Shear Flow: Viscoelasticity and Yield Phenomena,”Korean J. Chem. Eng.,18, 54 (2001).

    Article  CAS  Google Scholar 

  • Choi, H. J., Cho, M. S., Kim, J. W., Kim, C. A. and Jhon, M. S., “A Yield stress Scaling Function for Electrorheological Fluids,”Appl. Phys. Lett.,78, 3806 (2001).

    Article  CAS  Google Scholar 

  • Deinega, Y. F. and Vinogradov, G. V, “Electric Fields in the Rheological Disperse System,”Rheol. Acta,23, 636 (1984).

    Article  CAS  Google Scholar 

  • Gast, A. P. and Zukoski, C. F, “Electrorheological Fluids as Colloidal Suspensions,”Adv. Coll. Int. Sci.,30, 153 (1989).

    Article  CAS  Google Scholar 

  • Goodwin, J. W., Markham, G. M. and Vincent, B., “Studies on Model Electrorheological Fluids,”J. Phys. Chem. B,101, 1961 (1997).

    Article  CAS  Google Scholar 

  • Jackson, J. D., “Electrodynamics,” 2nd ed. John Wiley and Sons, Inc. (1975).

  • Jones, T. B. and Kallio, G. A., “Dielectrophoretic Levitation of Spheres and Shells,”J. Electrostatics,6, 207 (1979).

    Article  CAS  Google Scholar 

  • Jordan, T. C. and Shaw, M. T., “Electrorheology,”IEEE Trans. Elect. Insul.,24, 849 (1989).

    Article  CAS  Google Scholar 

  • Kim, Y D. and Klingenberg, D. J., “Two Roles of Nonionic Surfactants on the Electrorheological Response,”J. Colloid Interface Sci,183, 568 (1996).

    Article  CAS  Google Scholar 

  • Kim, Y D., “A surfactant Bridge Model for the Nonlinear Electrorheological Effects of Surfactant-Activated ER Suspensions,”J. Colloid Interface Sci.,236, 225 (2001).

    Article  CAS  Google Scholar 

  • Kim, Y D. and Park, D. H., “The Electrorheological Responses of Suspensions of Polypyrrole-coated Polyethylene Particles,”Coll. Pol. Sci.,280, 828 (2002a).

    Article  CAS  Google Scholar 

  • Kim, Y D. and Park, D. H., “The Electrorheological and Dielectric Behaviors of Conducting Polymercoated Poly(ethyl mathacrylate) Suspensions,”Macromolecular Research,10, 215 (2002b).

    CAS  Google Scholar 

  • Kim, Y D., Choi, G. J., Sim, S. J. and Cho, Y S., “Electrorheological Suspensions of Two Polarizable Particles,”Korean J. Chem. Eng.,16, 338 (1999).

    Article  CAS  Google Scholar 

  • Kim, Y D. and Song, I. C., “Electrorheological and Dielectric Properties of Polypyrrole Dispersions,”J. Materials Sci.,37, 5051 (2002).

    Article  CAS  Google Scholar 

  • Klingenberg, D. J. and Zukoski, C. F, “Studies on the Steady-shear Behavior of Electrorheological Suspensions,”Langmuir,6, 15 (1990).

    Article  CAS  Google Scholar 

  • Mason, G. and Clark, W. C, “Liquid Bridges between Spheres,”Chem. Eng. Sci.,20, 859 (1965).

    Article  CAS  Google Scholar 

  • Myers, D., “Surfaces, Interfaces, and Colloids: Principles and Applications,” VCH Pub. Weinheim (1991).

    Google Scholar 

  • Parthasarathy, M. and Klingenberg, D. J., “Electrorheology: Mechanisms and Models,”Mater. Sci. and Eng. Rep.,R17, 57 (1996).

    Article  CAS  Google Scholar 

  • Petrzhik, G. G., Chertkova, O. A. and Trapeznikov, A. A., “Electrorheological Effect in Nonaqueous Dispersions of Various Compositions in Relation to the Electric Field Parameters,”Dokl. Akad. Nauk SSSR,253, 173 (1980).

    CAS  Google Scholar 

  • Pohl, H. A. and Crane, J. S., “Dielectrophoretic Force,“J. Theor. Biol,37, 1 (1972).

    Article  CAS  Google Scholar 

  • Rosen, M. J., “Surfactants and Interfacial Phenomena,” 2nd. ed. Wiley, New York (1989).

    Google Scholar 

  • Sher, L. D., “Dielectrophoresis in Lossy Dielectric Media,”Nature,220, 695 (1968).

    Article  Google Scholar 

  • Shulman, Z. P., Gorodkin, R G., Korobko, E. V. and Gleb, V. K, “The Electrorheological Effects and Its Possible Uses,”J. Non-Newt. Fluid Mech.,8, 29 (1981).

    Article  Google Scholar 

  • Trapeznikov, A. A., Petrzhik, G G. and Chertkova, O. A, “Electrorheological Properties of Nonaqueous Dispersions of Titanium Dioxide and Silicone Dioxide in Relation to Concentration and Moisture Content of Filler,”Koll. Zhurn.,43, 1134 (1981).

    CAS  Google Scholar 

  • Weiss, K. D. and Carlson, J. D., “Material Aspects of Electrorheological Systems,”J. Intell. Sys. and Struct.,4, 13 (1993).

    Article  Google Scholar 

  • Winslow, W M., “Induced Fibration of Suspensions,”J. Appl. Phys.,20, 1137 (1949).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Dae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.D., Lee, M.S. A frequency-dependent surfactant bridge model for the electrorheological behaviors of surfactant-activated suspensions. Korean J. Chem. Eng. 21, 567–574 (2004). https://doi.org/10.1007/BF02705489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705489

Key words

Navigation