Advertisement

Pramana

, 61:563 | Cite as

Phase conjugation of gap solitons: A numerical study

  • V. S. C. Manga Rao
  • S. Dutta Gupta
Article
  • 16 Downloads

Abstract

We study the effect of a nearby phase-conjugate mirror (PCM) on the gap soliton of a Kerr non-linear periodic structure. We show that phase conjugation of the gap soliton (in the sense of replication of the amplitude profile in the reverse direction) is possible under the condition of PCM reflectivity approaching unity. This is in contrast with the results for linear structures, where the wave profiles can be conjugated for arbitrary values of the PCM reflectivity. The sensitivity of the conjugation of the gap solitons to PCM reflectivity is ascribed to the fine balance of non-linearity with dispersion, necessary for their existence.

Keywords

Phase conjugation non-linear optical waveguides optical solitons optical bistability 

PACS Nos

42.65.Hw 42.65.Tg 42.65.Wi 42.65.Pc 

References

  1. [1]
    H G Winful and G I Stegeman,Proc. SPIE 517, 214 (1984)Google Scholar
  2. [2]
    S Dutta Gupta, inProgress in optics edited by E Wolf (North-Holland, Amsterdam, 1998) vol. 38; see also references hereinGoogle Scholar
  3. [3]
    W Chen and D L Mills,Phys. Rev. Lett. 58, 160 (1987)CrossRefADSGoogle Scholar
  4. [4]
    C M de Sterke and J E Sipe, inProgress in optics edited by E Wolf (North-Holland, Amsterdam, 1994) vol. 33Google Scholar
  5. [5]
    T G Brown and B J Eggleton,Opt. Exp. 3, 385 (1998)ADSCrossRefGoogle Scholar
  6. [6]
    N D Sankhey, D F Prelewitz and T G Brown,Appl. Phys. Lett. 60, 1427 (1992)CrossRefADSGoogle Scholar
  7. [6a]
    N D Sankhey, D F Prelewitz and T G Brown,J. Appl. Phys. 73, 1 (1993)CrossRefGoogle Scholar
  8. [6b]
    J He and M Cada,J. Quantum. Electron. 27, 1182 (1991)CrossRefADSGoogle Scholar
  9. [7]
    B J Eggleton, R E Slusher, C M de Sterke, P A Krug and J E Sipe,Phys. Rev. Lett. 76, 627 (1996)CrossRefGoogle Scholar
  10. [8]
    N G R Broderick, D J Richardson and M Isben,Opt. Lett. 25, 536 (2000)CrossRefADSGoogle Scholar
  11. [8a]
    P Millar, R M De La Rue, T F Krauss, J S Aitchison, N G R Broderick and D J Richardson,Opt. Lett. 24, 685 (1999)ADSGoogle Scholar
  12. [9]
    D Taverner, N G R Broderick, D J Richardson, M Isben and R I Laming,Opt. Lett. 23, 259 (1998)ADSGoogle Scholar
  13. [10]
    H G Winful and V Perlin,Phys. Rev. Lett. 84, 3586 (2000)CrossRefADSGoogle Scholar
  14. [11]
    S Dutta Gupta and J Jose,Opt. Commun. 125, 105 (1996)CrossRefADSGoogle Scholar
  15. [12]
    J Jose and S Dutta Gupta,Opt. Commun. 145, 220 (1998)CrossRefADSGoogle Scholar
  16. [13]
    T A Laine: Electromagnetic wave propagation in non-linear Kerr media, Doctoral Thesis (Royal Institute of Technology, Stockholm, 2000)Google Scholar
  17. [13a]
    T A Laine and A T Friberg,Opt. Commun. 159, 93 (1998)CrossRefADSGoogle Scholar
  18. [13b]
    T A Laine and A T Friberg,Appl. Phys. Lett. 74, 3248 (1999)CrossRefADSGoogle Scholar
  19. [14]
    G S Agarwal,Opt. Commun. 47, 77 (1983)CrossRefADSGoogle Scholar
  20. [15]
    M Born and E Wolf, inPrinciples of optics (Pergamon, New York, 1980) ch. 1Google Scholar
  21. [16]
    For results pertaining to the linear counterpart, see P Yeh,J. Opt. Soc. Am. A2, 568 (1985)ADSCrossRefGoogle Scholar
  22. [17]
    S Dutta Gupta,J. Opt. Soc. Am. B6, 1927 (1989)ADSGoogle Scholar
  23. [18]
    A E Kaplan and C T Law,IEEE J. Quantum. Electron. QE-21, 1529 (1985)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations