Korean Journal of Chemical Engineering

, Volume 21, Issue 1, pp 147–167 | Cite as

Recent advances in polymer reaction engineering: Modeling and control of polymer properties

  • Won Jung Yoon
  • Yang Soo Kim
  • In Sun Kim
  • Kyu Yong Choi


Complex reaction kinetics and mechanisms, physical changes and transport effects, non-ideal mixing, and strong process nonlinearity characterize polymerization processes. Polymer reaction engineering is a discipline that deals with various problems concerning the fundamental nature of chemical and physical phenomena in polymerization processes. Mathematical modeling is a powerful tool for the development of process understanding and advanced reactor technology in the polymer industry. This review discusses recent developments in modeling techniques for the calculation of polymer properties including molecular weight distribution, copolymer composition distribution, sequence length distribution and long chain branching. The application of process models to the design of model-based reactor optimizations and controls is also discussed with some examples.

Key words

Polymer Reaction Engineering Mathematical Modeling Polymerization Kinetics Polymer Reactor Optimization Polymer Reactor Control Parameter Estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anantawaraskul, S., Soares, J. B. P. and Wood-Adams, P.M., “Chemical Composition Distribution of Multicomponent Random Copolymers,” Paper presented at Polymer Reaction Engineering V, Quebec, Canada, May (2003).Google Scholar
  2. Arzamendi, G. and Asua, J.M., “Modeling Gelation and Sol Molecular Weight Distribution in Emulsion Polymerization,”Macromolecules,28, 7479 (1995).CrossRefGoogle Scholar
  3. Bergström, C.H., Sperlich, B. R., RuotoistenmÄki, J. and SeppÄlÄ, J.V., “Investigation of the Microstructure of Metallocene-catalyzed Norbornene-ethylene Copolymers Using NMR Spectroscopy,”J. Polym. Sci.: Part A: Polym. Chem.,36, 1633 (1998).CrossRefGoogle Scholar
  4. Bon, S.A. F., Bosveld, M., Klumperman, B. and German, A. L., “Controlled Radical Polymerization in Emulsion,”Macromolecules,30, 324 (1997).CrossRefGoogle Scholar
  5. Bouzid, D. and McKenna, T. F., “Evolution of Particle Morphology During the Production of High Impact Polypropylene,” Paper presented at Polymer Reaction Engineering V, Quebec, Canada, May (2003).Google Scholar
  6. de Brouwer, H., Tsavalas, J.G., Schork, F. J. and Monteiro, M. J., “Living Radical Polymerization in Miniemulsion Using Reversible Addition fragmentation Chain Transfer,”Macromolecules,33, 9239 (2000).CrossRefGoogle Scholar
  7. Butala, D.N., Fan, M.K.H. and Choi, K.Y., “Multiobjective Dynamic Optimization of Semibatch Free Radical Copolymerization Process with Interactive CAD Tools,”Comp. Chem. Eng., 12(11), 1115 (1988).CrossRefGoogle Scholar
  8. Butala, D. N., Liang, W. R. and Choi, K.Y., “Multiobjective Dynamic Optimization of Batch Free Radical Polymerization Process by Mixed Initiator Systems,”J. Appl. Polym. Sci.,44, 1759 (1992).CrossRefGoogle Scholar
  9. Butté, A., Ghielmi, A., Storti, G. and Morbidelli, M., “Calculation of Molecular Weight Distributions in Free-radical Polymerization with Chain Branching,”Macromol. Theory Simul.,8, 498 (1999a).CrossRefGoogle Scholar
  10. Butté, A., Storti, G. and Morbidelli, M., “Kinetics of Living Free Radical Polymerization,”Chem. Eng. Sci.,54, 3225 (1999b).CrossRefGoogle Scholar
  11. Butté, A., Storti, G. and Morbidelli, M., “Miniemulsion Living Free Radical Polymerization of Styrene,”Macromolecules,33, 3485 (2000).CrossRefGoogle Scholar
  12. Carrot, C. and Guillet, J., “From Dynamic Moduli to Molecular Weight Distribution: A Study of vArious Polydisperse Linear Polymers,”J. Rheol., 41(5), 1203 (1997).CrossRefGoogle Scholar
  13. Chatzidoukas, C., Perkins, J. D., Pistikopoulos, E.N. and Kiparissides, C., “Optimal Grade Transition and Selection of Closed-loop Controllers in a Gas-phase Olefin Polymerization Fluidized Bed Reactor,”Chem. Eng. Sci.,58, 3643 (2003).CrossRefGoogle Scholar
  14. Chen, C. C., “An Industry Perspective on Polymer Process Modeling,”CAST Communications, Summer (2002) [ htm].Google Scholar
  15. Chien, D. C.H. and Penlidis, A., “On-line Sensors for Polymerization Reactors,”JMS-Rev. Macromol. Chem. Phys., C30(1), 1 (1990).Google Scholar
  16. Choi, K.Y., “Modeling of Polymerization Processes,” in Computer-Aided Design of Catalysts; Becker, E. R., Pereira, C. J., Eds., 335, Marcel Dekker, New York (1993).Google Scholar
  17. Choi, K.Y. and Ray, W.H., “The Dynamic Behavior of Fluidized Bed Reactors for Solid Catalyzed Gas Phase Olefin Polymerization,”Chem. Eng. Sci., 40(12), 2261 (1985).CrossRefGoogle Scholar
  18. Choi, K.Y. and Ray, W.H., “The Dynamic Behavior of Continuous Stirred Bed Reactors for the Solid Catalyzed Gas Phase Polymerization of Propylene,”Chem. Eng. Sci., 43(10), 2587 (1986).CrossRefGoogle Scholar
  19. Chum, S. and Oswald, T., “Using Polymer Structure/property Models to Accelerate the Development of Industrially Significant Applications for Polyolefins,” Paper presented at Polymer Reaction Engineering V, Quebec, Canada, May (2003).Google Scholar
  20. Chum, P. S., Kao, C. I. and Knight, G.W., “Structure and Properties of Polyolefin Plastomers and Elastomers Produced from the Single Site, Constrained Geometry Catalyst,” Paper presented at Polyolefins IX, Houston, TX (1995).Google Scholar
  21. Congalidis, J. P., Richards, J.R. and Ray, W.H., “Feedforward and Feedback Control of a Solution Copolymerization Reactor,”AIChE J.,35(6), 891 (1989).CrossRefGoogle Scholar
  22. Congalidis, J. P. and Richards, J. R., “Process Control of Polymerization Reactors: An Industrial Perspective,”Polym. React. Eng., 6(2), 71 (1998).Google Scholar
  23. Crowley, T. and Choi, K.Y., “Calculation of Molecular Weight Distribution from Molecular Weight Moments in Free Radical Polymerization,”Ind. Eng. Chem. Res.,36, 1419 (1997a).CrossRefGoogle Scholar
  24. Crowley, T. and Choi, K.Y., “Discrete Optimal Control of Molecular Weight Distribution in a Batch Free Radical Polymerization Process,”Ind. Eng. Chem. Res.,36, 3676 (1997b).CrossRefGoogle Scholar
  25. Crowley, T. and Choi, K.Y., “Control of Molecular Weight Distribution and Tensile Strength in a Free Radical Styrene Polymerization Process,”J. Appl. Polym. Sci.,70, 1017 (1998a).CrossRefGoogle Scholar
  26. Crowley, T. and Choi, K. Y., “Experimental Studies on Optimal Molecular Weight Distribution Control in a Batch Free Radical Polymerization Process,”Chem. Eng. Sci., 53(15), 2769 (1998b).CrossRefGoogle Scholar
  27. Crowley, T. and Choi, K.Y., “Copolymer Hydrodynamic Volume Distribution in a Free Radical Copolymerization Process,”Polym. React. Eng., 7(1), 43 (1999a).Google Scholar
  28. Crowley, T. J. and Choi, K.Y., “Control of Copolymer Hydrodynamic Volume Distribution in Free Radical Copolymerization Process,”Comp. Chem. Eng.,23, 1153 (1999b).CrossRefGoogle Scholar
  29. Cunningham, M. F., “Living/Controlled Radical Polymerizations in Dispersed Phase Systems,”Prog. Polym. Sci.,27, 1039 (2002).CrossRefGoogle Scholar
  30. Debling, J. A., Han, G. C., Kuijpers, J., VerBurg, J., Zacca, J. and Ray, W.H., “Dynamic Modeling of Product Grade Transitions for Olefin Polymerization Processes,”AIChE J.,40, 506 (1994).CrossRefGoogle Scholar
  31. Dotson, N.A., Galvan, R., Laurence, R. L. and Tirrell, M., “Polymerization Process Modeling,” VCH Publishers, New York (1996).Google Scholar
  32. Doyle III, F. J., Soroush, M. and Cordeiro, C., “Control of Product Quality in Polymerization Processes,”AIChE Symp. Ser.,98, 290 (2002).Google Scholar
  33. Dubé, M. A., Soares, B. P. O., Penlidis, A. and Hamielec, A. E., “Mathematical Modeling of Multicomponent Chain-growth Polymerizations in Batch, Semibatch, and Continuous Reactors: A Review,”Ind. Eng. Chem. Res.,36, 966 (1997).CrossRefGoogle Scholar
  34. Flores-Cerrillo, J. and MacGregor, J. F., “Within-batch and Batch-tobatch Inferential-adaptive Control of Semibatch Reactors: A Partial Least Square Approach,”Ind. Eng. Chem. Res.,42, 3334 (2003).CrossRefGoogle Scholar
  35. Floyd, S., Choi, K.Y., Taylor, T.W. and Ray, W.H., “Polymerization of Olefins Through Heterogeneous Catalysis. IV. Modeling of Heat and Mass Transfer Resistance in the Polymer Particle Boundary Layer,”J. Appl. Polym. Sci.,31, 2231 (1986).CrossRefGoogle Scholar
  36. Floyd, S., Heiskanen, T., Taylor, T.W. and Ray, W. H., “Polymerization of Olefins Through Heterogeneous Catalysis. VI. Effect of Particle Heat and Mass Transfer on Polymerization Behavior and Polymer Properties,”J. Appl. Polym. Sci.,33, 1021 (1987).CrossRefGoogle Scholar
  37. Georges, M. K., Veregin, R. P. N., Kazmaier, P.M. and Hamer, G.K., “Narrow Molecular Weight Resins by a Free-radical Polymerization Process,”Macromolecules,26, 2987 (1993).CrossRefGoogle Scholar
  38. Goldwasser, J. M., Rudin, A. and Elsdon, W. L., “Characterization of Copolymers and Polymer Mixtures by Gel Permeation Chromatography,”J. Liquid Chromatogr.,5, 2253 (1982).CrossRefGoogle Scholar
  39. Goldwasser, J.M. and Rudin, A., “Analysis of Block and Statistical Copolymers by Gel Permeation Chromatography: Estimation of Mark-Houwink Constants,”J. Liquid Chromatogr.,6, 2433 (1983).CrossRefGoogle Scholar
  40. Grof, Z., Kosek, J., Marek, M. and Adler, P. M., “Modeling of Morphogenesis of Polyolefin Particles: Catalyst Fragmentation,”AIChE J., 49(4), 1002 (2003).CrossRefGoogle Scholar
  41. Guan, Z., Chen, G. and Ma, S.X. S., “Control of Polymer Topology through Transition Metal Catalysis: Synthesis of Functional Olefin Copolymers Using a Chain Walking Catalyst,”Polymer Preprints, 44(2), 14 (2003).Google Scholar
  42. Han, C. D. and Kwack, T.H., “Rheology-processing-property Relationships in Tubular Blown Film Extrusion. I. High-pressure Lowdensity Polyethylene,”J. Appl. Polym. Sci.,28, 3399 (1983).CrossRefGoogle Scholar
  43. Han, C.D., Kim, Y. J., Chuang, H.K. and Kwack, T.H., “Rheological Properties of Branched Low-density Polyethylene,”J. Appl. Polym. Sci.,28, 3435 (1983b).CrossRefGoogle Scholar
  44. Hölderle, M., Baumert, M. and Mülhaupt, R., “Comparison of Controlled Radical Styrene Polymerizations in Bulk and Nonaqueous Dispersion,”Macromolecules,30, 3420 (1997).CrossRefGoogle Scholar
  45. Hutchinson, R.A. and Ray, W.H., “Polymerization of Olefins through Heterogeneous Catalysis. VII. Particle Ignition and Extinction Phenomena,”J. Appl. Polym. Sci.,34, 657 (1987).CrossRefGoogle Scholar
  46. Jeong, B.G., Yoo, K.Y. and Rhee, H. K., “Nonlinear Model Predictive Control Using a Wiener Model of a Continuous Methyl Methacrylate Polymerization Reactor,”Ind. Eng. Chem. Res., 40(25), 5968 (2001).CrossRefGoogle Scholar
  47. Keil, K., “The Use of High Throughput Screening Tools in Polymer Reaction Engineering,” Paper presented at Polymer Reaction Engineering V, Quebec, Canada, May (2003).Google Scholar
  48. Kim, K. J. and Choi, K.Y., “On-line Estimation and Control of a Continuous Stirred Tank Polymerization Reactor,”J. Proc. Control.,1, 96 (1991).CrossRefGoogle Scholar
  49. Kim, K. J., Choi, K. Y. and Alexander, J. C., “Dynamics of a CSTR for Styrene Polymerization Initiated by a Binary Initiator System,”Polym. Eng. Sci.,30(5), 279 (1990).CrossRefGoogle Scholar
  50. Kim, K. J., Choi, K.Y. and Alexander, J. C., “Dynamics of a Cascade of Two Continuous Stirred Tank Polymerization Reactors with a Binary Initiator Mixture,”Polym. Eng. Sci.,31(5), 333 (1991).CrossRefGoogle Scholar
  51. Kim, K. J., Choi, K. Y. and Alexander, J. C., “Dynamics of a CSTR for Styrene Polymerization Initiated by a Binary Initiator Mixture. II. Effect of Viscosity Dependent Heat Transfer Coefficient,”Polym. Eng. Sci.,32(7), 494 (1992).CrossRefGoogle Scholar
  52. Kim, J. D., Soares, J. B. P. and Rempel, G. L., “Synthesis of Tailor-made Polyethylene through the Control of Polymerization Conditions Using Selectively Combined Metallocene Catalysts in a Supported System,”J. Polym. Sci.: Part A: Polym. Chem.,37, 331 (1999).CrossRefGoogle Scholar
  53. Kiparissdes, C., “Polymerization Reactor Modeling: A Review of Recent Developments and Future Directions,”Chem. Eng. Sci., 51(10), 1637 (1996).CrossRefGoogle Scholar
  54. Kittilsen, P., McKenna, T. and Svendsen, H., “The Interaction Between Mass Transfer Effects and Morphology in Heterogeneous Olefin Polymerization,” Paper presented at the first Eur. Conf. on React. Eng. of Polyolefins, Lyon, France, July (2000).Google Scholar
  55. Kosek, J., Grof, Z., Salejova, G. and Marek, G., “Modeling of the Morphogenesis of Polyolefin Particles in Catalytic Reactors,” Paper presented at Polymer Reaction Engineering V, Quebec, Canada, May (2003).Google Scholar
  56. Lavallée, C. and Berker, A., “More on the Prediction of Molecular weight Predictions of Linear Polymers from Their Rheology,”J. Rheol., 41(4), 851 (1997).CrossRefGoogle Scholar
  57. Matyjaszewski, K., Patten, T. E. and Xia, J., “Controlled/living Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene,”J. Am. Chem. Soc.,119, 674 (1997).CrossRefGoogle Scholar
  58. McAuley, K. B. and MacGregor, J. F., “Optimal Grade Transition in a Gas Phase Polyethylene Reactor,”AIChE J.,38, 1564 (1992).CrossRefGoogle Scholar
  59. McKenna, T. F., Spitz, R., Kittilsen, P., Mattioli, V. and Martin, C., “Single Particle Transfer Phenomena: A Review and Future Directions,” ECOREP, Lyon, France, July (2000).Google Scholar
  60. Ogunnaike, B.A., “The Role of CACSD in Contemporary Industrial Process Control,”IEEE Control Systems, April, 41 (1995).Google Scholar
  61. Papavasiliou, G., Birol, I. and Teymour, F., “Calculation of Molecular weight Distributions in Non-linear Free-radical Polymerization Using the Numerical Fractionation Technique,”Macromol. Theory Simul.,11, 533 (2002).CrossRefGoogle Scholar
  62. Park, M. J. and Rhee, H.K., “Property Evaluation and Control in a Semibatch MMA/MA Solution Copolymerization Reactor,”Chem. Eng. Sci.,58, 603 (2003).CrossRefGoogle Scholar
  63. Park, S.Y., Choi, K.Y., Song, K.H. and Jeong, B.G., “Kinetic Modeling of Ethylene-norbornene Copolymerization Using Homogeneous Metallocene Catalysts,”Macromolecules,36, 4216 (2003).CrossRefGoogle Scholar
  64. Park, S.Y., “A Study on the Kinetics of Ethylene-norbornene Copolymerization over Homogeneous Metallocene Catalysts,” Ph.D. Thesis, University of Maryland, College Park (2003).Google Scholar
  65. Peterson, T., Hernandez, E., Arkun, Y. and Schork, F. J., “A Nonlinear DMC Algorithm and its Application to a Semibatch Polymerization Reactor,”Chem. Eng. Sci., 47(737)1992).CrossRefGoogle Scholar
  66. Pladis, P. and Kiparissides, C., “A Comprehensive Model for the Calculation of Molecular Weight-long-chain Branching Distribution in Free-radical Polymerizations,”Chem. Eng. Sci., 53(18), 3315 (1998).CrossRefGoogle Scholar
  67. Ray, W. H., “On the Mathematical Modeling of Polymerization Reactors,”J. Macromol. Sci. Rev. Macromolecular Chem. Phys.,C8, 1 (1972).Google Scholar
  68. Scali, C., Ciari, R., Bello, T. and Maschio, G., “Optimal Temperature for the Control of the Product Quality in Batch Polymerization: Simulation and Experimental Results,”J. Appl. Polym. Sci.,55, 945 (1995).CrossRefGoogle Scholar
  69. Schork, F. J., Desphande, P. B., Leffew, K.W., “Control of Polymerization Reactors,” Marcel Dekker, New York (1993).Google Scholar
  70. Seki, H., Ogawa, M., Ooyama, S., Akamatsu, K., Ohshima, M. and Yang, W., “Industrial Application of a Nonlinear Model Predictive Control to Polymerization Reactors,”Control Eng. Practice,9(8), 819 (2001).CrossRefGoogle Scholar
  71. Sirohi, A. and Choi, K. Y., “On-line Parameter Estimation in a Continuous Polymerization Process,”Ind. Eng. Chem. Res.,35, 1332 (1996).CrossRefGoogle Scholar
  72. Soares, J. B. P. and Hamielec, A. E., “Temperature Rising Elution Fractionation of Linear Polyolefins,”Polymer,36(8), 1639 (1995a).CrossRefGoogle Scholar
  73. Soares, J. B. P. and Hamielec, A. E., “Analyzing TREF Data by Stockmayer’s Bivariate Distribution,”Macromol. Theory Simul.,4, 305 (1995b).CrossRefGoogle Scholar
  74. Soares, J. B. P. and Hamielec, A. E., “Bivariate Chain Length and Long Chain Branching Distribution for Copolymerization of Olefins and Polyolefin Chains Containing Terminal Double Bonds,”Macromol. Theory Simul.,5, 547 (1996).CrossRefGoogle Scholar
  75. Soares, J. B. P. and Hamielec, A. E., “The Chemical Composition Component of the Distribution of Chain Length and Long Chain Branching for Copolymerization of Olefins and Polyolefin Chains Containing Terminal Double Bonds,”Macromol. Theory Simul.,6, 591 (1997a).CrossRefGoogle Scholar
  76. Soares, J. B. P., Kim, J. D. and Rempel, G., “Analysis and Control of the Molecular Weight and Chemical Composition Distributions of Polyolefins Made with Metallocene and Ziegler-Natta Catalysts,”Ind. Eng. Chem. Res.,36, 1144 (1997b).CrossRefGoogle Scholar
  77. Teymour, F. and Campbell, J.D., “Analysis of the Dynamics of Gelation in Polymerization Reactors Using the Numerical Fractionation Technique,”Macromolecules,27, 2460 (1994).CrossRefGoogle Scholar
  78. Teymour, F., “The Use of Digital Encoding for Modeling Copolymerization Systems,” Paper presented at Polymer Reaction Engineering V, Quebec, Canada (2003).Google Scholar
  79. Tritto, I., Boggioni, L., Jansen, J., Thorshaug, K., Sacchi, M. C. and Ferro, D. R., “Ethylene-norbornene Copolymer Microstructure at Tetrad Level: Advances in Assignments of 13C NMR Spectra and Insights on Polymerization Mechanisms,” Paper presented at Int. Symp. on Polyolefins and Olefin Polymerization Catalysis, Tokyo, Japan, March 21–24 (2001).Google Scholar
  80. Tritto, I., Boggioni, L., Jansen, J. C., Thorshaug, K., Sacchi, M. C. and Ferro, D. R., “Ethylene-norbornene Copolymers from Metallocenebased Catalysts: Microstructure at Tetrad Level and Reactivity Ratios,”Macromolecules,35, 616 (2002).CrossRefGoogle Scholar
  81. Tullo, A. H., “Single-site Success,”Chem. & Eng. News, 79(43), 35 (2001).Google Scholar
  82. Wang, Y., Seki, H., Ohyama, S., Akamatsu, K., Ogawa, M. and Ohshima, M., “Optimal Grade Transition Control for Polymerization Reactors,”Comp. & Chem. Eng.,24, 1555 (2000).CrossRefGoogle Scholar
  83. Weng, W., Market, E. J., Dekmezian, A.H. and Ruff, C. J., “Long Chain Branched Isotactic Polypropylene,”Macromolecules,35(10), 3838 (2002).CrossRefGoogle Scholar
  84. Weng, W., Hu, W. and Dekmezian, A. H., “Structure and Property of Long Chain Branched Isotactic Polypropylene,”Polymer Preprints, 44(2), 17 (2003).Google Scholar
  85. Wulkow, M., “The Simulation of Molecular Weight Distributions in Polyreaction Kinetics by Discrete Galerkin Methods,”Macromol. Theory Simul.,5, 393 (1996).CrossRefGoogle Scholar
  86. Wulkow, M., (Computer in Technology,, personal communication (2003).Google Scholar
  87. Yiannoulakis, H., Yiagopoulos, A., Pladis, P. and Kiparissides, C., “Comprehensive Dynamic Model for the Calculation of the Molecular weight and Long Chain Branching Distributions in Metallocene-catalyzed Ethylene Polymerization Reactors,”Macromolecules,33, 2757 (2000).CrossRefGoogle Scholar
  88. Yoon, W. J., Ryu, J.H., Cheong, C. and Choi, K.Y., “Calculation of Molecular Weight Distribution in a Batch Thermal Polymerization of Styrene,”Macromol. Theory Simul.,7, 327 (1998).CrossRefGoogle Scholar
  89. Yoon, W. J., “Modeling of Industrial Styrene Polymerization Process,” unpublished work (2003).Google Scholar
  90. Young, R. E., Bartusiak, R.D. and Fontaine, R.W., “Evolution of an Industrial Nonlinear Model Predictive Controller,”AIChE Symp. Ser.,98, 342 (2002).Google Scholar
  91. Zhang, M. and Ray, W.H., “Modeling of Living Free Radical Polymerization Processes. I. Batch, Semibatch, and Continuous Tank Reactors,”J. Appl. Polym. Sci.,86, 1630 (2002).CrossRefGoogle Scholar
  92. Zhu, S. and Li, D., “Molecular weight Distribution of Metallocene Polymerization with Long Chain Branching Using a Binary Catalyst System,”Macromol. Theory Simul.,6, 793 (1997).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2004

Authors and Affiliations

  • Won Jung Yoon
    • 1
  • Yang Soo Kim
    • 2
  • In Sun Kim
    • 3
  • Kyu Yong Choi
    • 1
    • 3
  1. 1.Department of Chemical and BioengineeringKyungwon UniversityKyunggi-doKorea
  2. 2.School of Advanced Materials and EngineeringInje UniversityGyeongnamKorea
  3. 3.Department of Applied ChemistryDongyang Technical CollegeSeoulKorea

Personalised recommendations