Advertisement

Korean Journal of Chemical Engineering

, Volume 15, Issue 1, pp 64–70 | Cite as

Synthesis and cycling behavior of LiMn2O4 cathode materials prepared by glycine-assisted sol-gel method for lithium secondary batteries

  • Yang-Kook Sun
  • Dong-Won Kim
  • Sung-Ho Jin
  • Yoo-Eup Hyung
  • Sung-In Moon
  • Dong-Kyu Park
Article

Abstract

Spinel-type LiMn2O4 powders having submicron, narrow particle-size distribution and excellent phasepure particles have been synthesized at low temperatures from metal acetate aqueous solution containing glycine as a chelating agent by a sol-gel method. The dependence of the physicochemical properties and cycling characteristics of the spinel LiMn2O4 powders on the various calcination temperatures has been extensively studied. It was found that the physicochemical properties of the LiMn2O4 powders could be controlled by simply varying the calcination temperature. Glycine-assisted LiMn2O4 powders have shown excellent rechargeability and delivered discharge capacity of 119 mAh/g for more than 150th cycles in Li/polymer electrolyte/liMn2O4 cells.

Key words

Lithium Secondary Battery Lithium Manganese Oxide Sol-Gel Method Chelating Agent Glycine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barboux, P., Tarascon, J. M. and Shokoohi, F. K., “The Use of Acetates as Precursors for the Low-Temperature Synthesis of LiMn2O4 and LiCoO2 Intercalation Compounds ”,J. of Solid State Chem.,94, 185 (1991).CrossRefGoogle Scholar
  2. Cho, J., Guan, J. and Liu, M., “Electrochemical Properties of LixMn2O4 Composite Electrode in Cells Based on Glass-Polymer Composite Electrolytes “,Solid State Ionics,95, 289 (1997).CrossRefGoogle Scholar
  3. Feng, L., Chang, Y., Wu, L. and Lu, T., “Electrochemical Behaviour of Spinel LiMn2O4 as Positive Electrode in Rechargeable Lithium Cells ”,J. of Power Sources,63, 149 (1996).CrossRefGoogle Scholar
  4. Gao, Y. and Dann, J. R., “Synthesis and Characterization of Li1+xMn2-xO4 for Li-ion Batter Applications ”,J. Electrochem. Soc.,143, 100 (1996).CrossRefGoogle Scholar
  5. Gummow, R. J., Kock, A. de and Thackeray, M. M., “Improved Capacity Retention in Rechargeable 4 V Lithium/ lithium-Manganese Oxide (Spinel) Cells ”,Solid State Ionics,69, 59 (1994).CrossRefGoogle Scholar
  6. Guohua, Li, Ikuta, H., Uchida, T. and Wakihara, M., “The Spinel LiMyMn2-yO4(M=Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries”,J. Electrochem. Soc.,143, 178 (1996).CrossRefGoogle Scholar
  7. Guyomard, D. and Tarascon, J. M., “The Carbon/Li1+xMn2O4 System”,Solid State Ionics,69, 222 (1994).CrossRefGoogle Scholar
  8. Jang, D. H., Shin, Y. J. and Oh, S. M., “Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/LixMn2O4 Cells”,J. Electrochem. Soc.,143, 2204 (1996).CrossRefGoogle Scholar
  9. Jiang, Z. and Abraham, K. M., “Preparation and Electrochemical Characterization of Micron-Sized Spinel LiMn2O4”,J. Electrochem. Soc.,143, 1591 (1996).CrossRefGoogle Scholar
  10. Kim, D.-W. and Sun, Y.-K., “Polymer Electrolytes Based on Acrylonitrile-Methyl Methacrylate-Styrene Terpolymer for Rechargeable Lithium Polymer Batteries”,J. Electrochem. Soc., submitted.Google Scholar
  11. Liu, W., Farrington, G. C., Chaput, F. and Dunn, B., “Synthesis and Electrochemical Studies of Spinel Phase LiMn2O4 Cathode Materials Prepared by Pechini Process”,J. Electrochem. Soc.,143, 879 (1996).CrossRefGoogle Scholar
  12. Liu, W., Kowal, K. and Farrington, G. C., “Electrochemical Characteristics of Spinel Phase LiMn2O4-Based Cathode Materials Prepared by the Pechini Process”,J. Electrochem. Soc.,143, 3590 (1996).CrossRefGoogle Scholar
  13. Macklin, W. J., Neat, R. J. and Powell, R. J., “Performance of Lithium-manganese Oxide Spinel Electrodes in a Lithium Polymer Electrolyte Cell”,J. of Power Sources,34, 39 (1991).CrossRefGoogle Scholar
  14. Masquelier, C., Tabuchi, M., Ado, K., Kanno, R., Kobayashi, Y., Maki, Y., Nakamura, O. and Goodenough, B., “Chemical and Magnetic Characterization of Spinel Materials in the LiMn2O4-Li2Mn4O9-Li4Mn5O12 System”,J. Solid State Chem.,123, 255 (1996).CrossRefGoogle Scholar
  15. Momchilov, A., Manev, V., Nassalevska, A. and Kozawa, A, “Rechargeable Lithium Battery with Spinel-related MnO2 II. Optimization of the LiMn2O4 Synthesis Conditions”,J. of Power Sources,41, 305 (1993).CrossRefGoogle Scholar
  16. Oh, I.-H., Hong, S.A. and Sun, Y.-K., “Low-Temperature Preparation of Ultrafine LiCoO2 Powders by the Sol-Gel Method”,J. Mater. Sci.,32, 3177 (1997).CrossRefGoogle Scholar
  17. Pistoia, G. and Wang, G., “Aspects of the Li+ Insertion into Li×Mn2O4 for 0<×<l”,Solid State Ionics,66, 135 (1993).CrossRefGoogle Scholar
  18. Prabaharan, S., Michael, M. S., Kumar, T. P., Mani, A., Athinarayanaswamy, K. and Gangadharan, R., “Bulk Synthesis of Submicrometre Powders of LiMn2O4 for Secondary Lithium Batteries”,J. Mater. Chem.,5, 1035 (1995).CrossRefGoogle Scholar
  19. Pyun, S.-L, Jeong, I.-J. and Choi, Y.-M., “The Effect of Lithium Content on the Electrochemical Lithium Intercalation into Amorphous and Crystalline Powdered LiMn-2O4 Electrodes Prepared by Sol-Gel Method”,J. Power Sources, In Press.Google Scholar
  20. Qiu, X., Sun, X., Shen, W. and Chen, N., “Spinel Li1+xMn2-O4 Synthesized by Coprecipitation as Cathodes for Lithium-Ion Batteries”,Solid State Ionics,93, 335 (1997).CrossRefGoogle Scholar
  21. Richard, M. N., Fuller, E. W. and Dahn, J. R., “The Effect of Ammonia on the Spinel Electode Materials, LiMn2O4 and Ii(Li1/3Mn5/3)O4”,Solid State Ionics,73, 81 (1994).CrossRefGoogle Scholar
  22. Sun, Y.-K. and Oh, I.-H., “Synthesis of LiNiO2 Powders by a Sol-Gel Method”,J. Mater. Sci. Lett.,16(1), 30 (1997).CrossRefGoogle Scholar
  23. Sun, Y.-K. and Oh, I.-H., “Synthesis of Ultrafine LiCoO2 Powders by the Sol-Gel Method”,J. Mater. Sci.,31, 3617 (1996).CrossRefGoogle Scholar
  24. Tarascon, J. M., Wang, E., Shokoohi, F. K, McKinnon, W. R. and Colson, S., “The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells”,J. Electrochem. Soc.,138, 2859 (1991).CrossRefGoogle Scholar
  25. Teraoka, Y., Kakebayashi, H., Moriguchi, I. and Kagawa, S., “Hydroxy Acid-Aided Synthesis of Perovskite-Type Oxides of Cobalt and Manganese”,Chem. Lett., 673 (1991).Google Scholar
  26. Tsumura, T., Shimizu, A. and Inagaki, M., “Synthesis of Li-Mn2O4 Spinel via Tartates”,J. Mater. Chem.,3, 995 (1993).CrossRefGoogle Scholar
  27. Xia, Y., Zhou, Y. and Yoshio, M., “Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells”,J. Electrochem. Soc.,144, 2593 (1997).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 1998

Authors and Affiliations

  • Yang-Kook Sun
    • 1
  • Dong-Won Kim
    • 1
  • Sung-Ho Jin
    • 1
  • Yoo-Eup Hyung
    • 1
    • 2
  • Sung-In Moon
    • 1
    • 2
  • Dong-Kyu Park
    • 1
    • 3
  1. 1.Polymer Materials Laboratory, Chemical SectorSamsung Advanced Institute of TechnologyTaejonKorea
  2. 2.Korea Electrotechnology Research InstituteChangwonKorea
  3. 3.Dept. of ChemistryKyungsung UniversityPusanKorea

Personalised recommendations