, Volume 62, Issue 5, pp 1059–1072 | Cite as

α-Particle induced reactions on rhodium

  • M. S. Gadkari
  • N. L. Singh


Excitation functions for103Rh (α,xn);x = 1–4 and103Rh (α,αxn);x = 1–3 reactions were measured up to 50 MeV bombarding energy using stacked foil activation technique and high purity germanium (HPGe) γ-ray spectroscopy method. The experimental results were compared with calculations considering equilibrium as well as pre-equilibrium hybrid model of Blann (ALICE/90). It is found that the initial exciton configurationn 0 = 4(4p0h) gives fairly good agreements for (α,xn) reactions. There seems to be indication of direct inelastic scattering effects in (α,αxn)-type of reactions.


Excitation functions pre-equilibrium effects γ-ray spectroscopy stacked foil activation ALICE/90 


25.55.-e 27.60.+j 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J J Griffin,Phys. Rev. Lett. 17, 478 (1966)CrossRefADSGoogle Scholar
  2. [2]
    M Blann,Annu. Rev. Nucl. Sci. 25, 123 (1975)CrossRefADSGoogle Scholar
  3. [3]
    G D Harp, J M Miller and B J Berne,Phys. Rev. 165, 1166 (1968)CrossRefADSGoogle Scholar
  4. [4]
    M Blann,Phys. Rev. Lett. 27, 337 (1971);27, 700E (19714);27, {1550E} (1971)CrossRefADSGoogle Scholar
  5. [5]
    E Gadioli, E Gadioli-Erba and P G Sona,Nucl. Phys. A271, 589 (1973)ADSGoogle Scholar
  6. [6]
    M Blann and H K Vonach,Phys. Rev. C28, 1475 (1983)ADSGoogle Scholar
  7. [7]
    J Ernst, W Friedland and H Stockhorst,Z. Phys. A328, 333 (1987)Google Scholar
  8. [8]
    G Mantzouranis, D Agassi and H A Weidenmüeller,Z. Phys. A27, 145 (1976)Google Scholar
  9. [9]
    J M Akkermans, H Gruppelaar and G Reffo,Phys. Rev. C22, 73 (1980)ADSGoogle Scholar
  10. [10]
    D Agassi, H A Weidenmüeller and G Mantzouranis,Phys. Rev. C22, 145 (1975)Google Scholar
  11. [11]
    T Tamura, T Udagawa, D H Feng and K K Kan,Phys. Lett. B68, 109 (1977)ADSGoogle Scholar
  12. [12]
    L Avaldi, R Bonetti and L Colli Milazzo,Phys. Lett. B94, 463 (1980)ADSGoogle Scholar
  13. [13]
    G M Field, R Bonetti and P E Hodgson,J. Phys. G12, 93 (1986)ADSGoogle Scholar
  14. [14]
    L F Hansen and M L Stelts,Phys. Rev. 136, 1000 (1964)CrossRefADSGoogle Scholar
  15. [15]
    M J Ozafran, M E Vazquez, M De La Vega Vedoya and S J Nassiff,Radiochem. Radio-rial. Lett. 43, 265 (1980)Google Scholar
  16. [16]
    G W A Newton, V J Robinson and E M Shaw,J. Inorg. Nucl. Chem. 43, 2227 (1981)CrossRefGoogle Scholar
  17. [17]
    M Afzal Ansari, N P M Sathik, B P Singh, M G V Sankaracharyulu and R Prasad,Int. J. Mod. Phys. E5, 345 (1996)ADSGoogle Scholar
  18. [18]
    F Hubert, R Bimbot and H Gauvin,Atomic Data Nucl. Data Tables 46, 96 (1990)CrossRefGoogle Scholar
  19. [19]
    H J Probst, S M Qaim and R Weinreich,Int. J. Appl. Rad. Isotopes 27, 431 (1976)CrossRefGoogle Scholar
  20. [20]
    C M Lederer and V S Shirley,Table of isotopes, 7th edition (John Wiley & Sons, New York, 1978)Google Scholar
  21. [21]
    M Blann, Code ALICE/85/300, Lawrence Livermore National Laboratory Report UCID-20169, unpublished (1984)Google Scholar
  22. [22]
    S K Kataria, V S Ramamurthy and S S Kapoor,Phys. Rev. C18, 549 (1978)ADSGoogle Scholar
  23. [23]
    W D Myers and W J Swiatecki,Ark. Fys. 36, 343 (1967)Google Scholar
  24. [24]
    F D Becchetti and G W Greenless,Phys. Rev. 182, 1190 (1969)CrossRefADSGoogle Scholar
  25. [25]
    V F Weisskopf and D H Ewing,Phys. Rev. 57, 472 (1940)CrossRefADSGoogle Scholar
  26. [26]
    M Blann,Phys. Rev. Lett. 27, 337 (1971)CrossRefADSGoogle Scholar
  27. [27]
    N L Singh, M S Gadkari and S N Chintalapudi,Phys. Scr. 61, 550 (2000)CrossRefADSGoogle Scholar
  28. [28]
    F M Lanzafame and M Blann,Nucl. Phys. A142, 545 (1970)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2004

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceM.S. University of BarodaVadodaraIndia

Personalised recommendations