Korean Journal of Chemical Engineering

, Volume 9, Issue 3, pp 128–134 | Cite as

In situ berberine separation with immobilized adsorbent in cell suspension cultures ofThalictrum rugosum

  • Jeong-Woo Choi


The use of suspended and alginate-entrapped XAD-7, polycarboxyl ester resin, for thein situ separation of berberine, isoquinoline alkaloid, produced from plant cell culture ofThalictrum rugosum was investigated. XAD-7 could adsorb the berberine and the amount of berberine adsorbed on XAD-7 depended on pH. The neutral form of berberine was adsorbed onto XAD-7 and the adsorption isotherm for berberine showed a Langmuir-type appearance.In situ berberine removal enhanced the production of secondary metabolites in cell suspension culture ofThalictrum rugosum. Addition of XAD-7 at the exponential phase of cell growth was the most effective for enhancement of berberine production. In chitosan-treated cell culture to permeabilize intracellular berberine, berberine secretion was significantly accelerated by addition of alginate-entrapped XAD-7 at the stationary phase of cell growth and thus more than 70% of the produced berberine could be adsorbed to alginate-entrapped XAD-7.


Chitosan Cell Suspension Culture Berberine Plant Cell Culture Shikonin 



amount of the adsorbent [g]


berberine concentration [mg/mL]


adsorbed berberine concentration [mg/mL]


initial berberine concentration [mg/mL]


concentration of protonated forms of berberine [mg/mL]


concentration of unprotonated forms of berberine [mg/mL]


resin loading capacity [mg adsorbed/g adsorbent]


liquid volume of berberine solution [mL]


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Skinner, N. E., Walton, N. J., Robins, R. J. and Rhodes, M. J. C:Phytochem.,26, 721 (1987).CrossRefGoogle Scholar
  2. 2.
    Payne, G. F. and Payne, N. N.:Biotechnol. Lett,10, 187 (1988).CrossRefGoogle Scholar
  3. 3.
    Mavituna, F., Wilkinson, A. K. and Williams, P. D.: “Separations for Biotechnology” (ed. by Verrall, M. S. and Hudson, M. T.), Ellis Horwood Limited, Chichester, p. 333 (1987).Google Scholar
  4. 4.
    Robins, R. J. and Rhodes, M. J. C:Appl. Microbiol. Biotechnol.,24, 35 (1986).CrossRefGoogle Scholar
  5. 5.
    Deno, H., Suga, C., Morimoto, T. and Fujita, Y.:Plant Cell Rep.,6, 197 (1987).CrossRefGoogle Scholar
  6. 6.
    Cormier, F. and Ambid, C:Plant Cell Rep.,6, 427 (1987).Google Scholar
  7. 7.
    Berlin, J., Witte, L., Schubert, W. and Wray, V.:Phytochem.,23, 1277 (1984).CrossRefGoogle Scholar
  8. 8.
    Hooker, B. S. and Lee, J. M.:Plant Cell Rep.,8, 546 (1990).CrossRefGoogle Scholar
  9. 9.
    Payne, G. F. and Shuler, M. L.:Biotechnol. Bioeng. Symp.,15, 633 (1985).Google Scholar
  10. 10.
    Paleos, J.:J. of Colloid and Interface Sci.,31, 7 (1969).CrossRefGoogle Scholar
  11. 11.
    Payne, G. F. and Shuler, M. L.:Biotechnol. Bioeng.,31, 922 (1988).CrossRefGoogle Scholar
  12. 12.
    Asada, M. and Shuler, M. L.:Appl. Microbiol. Biotechnol.,30, 475 (1989).CrossRefGoogle Scholar
  13. 13.
    Fowler, M.W.:J. Chem. Tech. Biotechnol.,32, 338 (1982).Google Scholar
  14. 14.
    Fowler, M. W.:Trends in Biotechnol.,14, 214 (1986).CrossRefGoogle Scholar
  15. 15.
    Zenk, M. A., Rueffer, M., Amann, M. and Deus-Neumann, B.:J. of Natural Plants,48, 725 (1985).CrossRefGoogle Scholar
  16. 16.
    Robison, R. C. and Cha, D. Y.:Biotechnol. Prog.,1, 18 (1985).CrossRefGoogle Scholar
  17. 17.
    Choi, J. W.: Ph.D Thesis, Rutgers Univ., New Brunswick, U.S.A. (1990).Google Scholar
  18. 18.
    Nigam, S. C., Siahpush, A. R. and Wang, H. Y.:AIChE J.,36, 1239 (1990).CrossRefGoogle Scholar
  19. 19.
    Young, D. H. and Kauss, H.:Plant Pysiol,73, 698 (1983).Google Scholar

Copyright information

© Korean Institute of Chemical Engineering 1992

Authors and Affiliations

  • Jeong-Woo Choi
    • 1
  1. 1.Department of Chemical EngineeringSogang UniversitySeoulKorea

Personalised recommendations