Skip to main content
Log in

Links between neutrino oscillations, leptogenesis, and proton decay within supersymmetric grand unification

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Evidence in favor of supersymmetric grand unification including that based on the observed family multiplet-structure, gauge coupling unification, neutrino oscillations, baryogenesis, and certain intriguing features of quark-lepton masses and mixings is noted. It is argued that attempts to understand (a) the tiny neutrino masses (especially Δm 2(v 2 – v3)), (b) the baryon asymmetry of the Universe (which seems to need leptogenesis), and (c) the observed features of fermion masses such as the ratiom b/mτ, the smallness ofV cb and the maximality of\(\Theta _{\nu _\mu \nu _\tau }^{OSC} \) seem to select out the route to higher unification based on an effective string-unifiedG(224) =SU(2)L ×SU(2)R ×SU(2)c orSO(10)-symmetry that should be operative in 4D, as opposed to other alternatives. A predictiveSO(10)/G(224)-framework possessing supersymmetry is presented that successfully describes the masses and mixings of all fermions including neutrinos. It also accounts for the observed baryon asymmetry of the Universe by utilizing the process of leptogenesis, which is natural to this framework. It is argued that a conservative upper limit on the proton lifetime within thisSO(10)/G(224)-framework, which is so far most successful, is given by\(\frac{1}{3} - 2\) x 1034 years. This in turn strongly suggests that an improvement in the current sensitivity by a factor of five to ten (compared to SuperK) ought to reveal proton decay. Implications of this prediction for the next-generation nucleon decay and neutrino-detector are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y Fukudaet al (Super-Kamiokande),Phys. Rev. Lett. 81, 1562 (1998); hep-ex/9807003

    Article  ADS  Google Scholar 

  2. K Nishikawa (K2K) Talk at Neutrino 2002, Munich, Germany

  3. Q R Ahmadet al (SNO),Phys. Rev. Lett. 81, 011301 (2002)

    Article  ADS  Google Scholar 

  4. B T Clevelandet al (Homestake),Astrophys. J. 496, 505 (1998)

    Article  ADS  Google Scholar 

  5. W Hampelet al (GALLEX),Phys. Lett. B447, 127 (1999)

    ADS  Google Scholar 

  6. J N Abdurashitovet al (SAGE) (2000), astroph/0204245

  7. M Altmannet al (GNO),Phys. Lett. B490, 16 (2000)

    ADS  Google Scholar 

  8. S Fukudaet al (SuperKamiokande),Phys. Lett. B539, 179 (2002)

    ADS  Google Scholar 

  9. Disappearance of -ve ’s produced in earth-based reactors is established by the Kam-LAND data

  10. K Eguchiet al, hep-ex/0212021

  11. For a historical overview of theoretical calculations of expected solar neutrino flux, see J Bahcall, astro-ph/0209080

  12. See, e.g., S Weinberg,Phys. Rev. Lett. 43, 1566 (1979);Proc. XXVI Int. Conf. on High Energy Physics, Dallas, TX, 1992

    Article  ADS  Google Scholar 

  13. E Akhmedov, Z Berezhiani and G Senjanovic,Phys. Rev. D47, 3245 (1993). Assuming that quantum gravity could induce violation of lepton number, one may allow for an effective non-renormalizable operator of the form λLLLLHH/Mpl + h.c, scaled by Mpl = 1.2 x 1019 GeV with(H) ≈ 250 GeV. Such an operator would, however, yield a rather small Majorana massm(vL) ~ 10-5 eV for the left-handed neutrinos, even for a maximal λL ~ 1, as mentioned in the text

    ADS  Google Scholar 

  14. J C Pati,Implications of the SuperKamiokande result on the nature of new physics, in Neutrino 98, Takayama, Japan, June 98, hep-ph/9807315;Nucl. Phys. B (Proc. Suppl.)77, 299 (1999)

  15. J C Pati and Abdus Salam,Phys. Rev. D8, 1240 (1973)

    ADS  Google Scholar 

  16. J C Pati and Abdus Salam,Phys. Rev. Lett. 31, 661 (1973);Phys. Rev. D10, 275 (1974)

    Article  ADS  Google Scholar 

  17. H Georgi and S L Glashow,Phys. Rev. Lett. 32, 438 (1974)

    Article  ADS  Google Scholar 

  18. H Georgi, H Quinn and S Weinberg,Phys. Rev. Lett. 33, 451 (1974)

    Article  ADS  Google Scholar 

  19. Y A Golfand and E S Likhtman,JETP Lett. 13, 323 (1971)

    ADS  Google Scholar 

  20. J Wess and B Zuimino,Nucl. Phys. B70, 139 (1974)

    Google Scholar 

  21. D Volkov and V P Akulov,JETP Lett. 16, 438 (1972)

    ADS  Google Scholar 

  22. E Witten,Nucl. Phys. B188, 513 (1981)

    Article  ADS  Google Scholar 

  23. R K Kaul,Phys. Lett. B109, 19 (1982)

    ADS  Google Scholar 

  24. S Dimopoulos, S Raby and F Wilczek,Phys. Rev. D24, 1681 (1981)

    ADS  Google Scholar 

  25. W Marciano and G Senjanovic,Phys. Rev. D25, 3092 (1982)

    ADS  Google Scholar 

  26. M Einhorn and D R T Jones,Nucl. Phys. B196, 475 (1982)

    Article  ADS  Google Scholar 

  27. For work in recent years, see P Langacker and M Luo,Phys. Rev. D44, 817 (1991)

    ADS  Google Scholar 

  28. U Amaldi, W de Boer and H Furtenau,Phys. Rev. Lett. B260, 131 (1991)

    Google Scholar 

  29. F Anselmo, L Cifarelli, A Peterman and A Zichichi,Nuovo. Cimento A104, 1817 (1991)

    Google Scholar 

  30. K S Babu, J C Pati and F Wilczek, hep-ph/981538V3;Nucl. Phys. B (to appear)

  31. M Fukugita and T Yanagida,Phys. Lett. B174, 45 (1986)

    ADS  Google Scholar 

  32. M A Luty,Phys. Rev. D45, 455 (1992)

    ADS  Google Scholar 

  33. W Buchmuller and M Plumacher, hep-ph/9608308

  34. V Kuzmin, V Rubakov and M Shaposhnikov,Phys. Lett. BM155, 36 (1985)

    ADS  Google Scholar 

  35. H Georgi, inParticles and fields edited by C Carlson (AIP, NY, 1975) p. 575

  36. H Fritzsch and P Minkowski,Ann. Phys. 93, 193 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  37. J C Pati, hep-ph/9811442;Int. J. Mod. Phys. A14, 2949 (1999)

    ADS  MathSciNet  Google Scholar 

  38. Sections 2–5 of the full-length article giving details of these discussions and derivation of the results, presented in this introduction, are not included in these proceedings, owing to length restrictions. They will, however, appear in the article in the archives

  39. I Antoniadis, G Leontaris and J Rizos,Phys. Lett. B245, 161 (1990)

    ADS  Google Scholar 

  40. G K Leontaris,Phys. Lett. B372, 212 (1996); hep-ph/9601337

    ADS  MathSciNet  Google Scholar 

  41. A Murayama and T Toon,Phys. Lett. B318, 298 (1993)

    ADS  Google Scholar 

  42. Z Kakushadze,Phys. Rev. D58, 101901 (1998)

    ADS  MathSciNet  Google Scholar 

  43. G Aldazabal, L I Ibanez and F Quevedo, hep-th/9909172 C Kokorelis, hep-th/0203187; hep-th/0209202

  44. M Cvetic, G Shiu and A M Uranga,Phys. Rev. Lett. 87, 201801 (2001); hep-th/0107143;Nucl. Phys. B615, 3 (2001); hep-th/0107166

    Article  ADS  MathSciNet  Google Scholar 

  45. M Cvetic and I Papadimitrious, hep-th/0303197

  46. R Blumenhagen, L Gorlich and T Ott, hep-th/0211059

  47. L I Everett, G L Kane, S F King, S Rigolin and L T Wang, hep-th/0202100

  48. R Dermisek and A Man,Phys. Rev. D65, 055002 (2002); hep-ph/0108139

    ADS  Google Scholar 

  49. Q Shan and Z Tavartkiladze, hep-ph/0108247; hep-ph/0303150

  50. C H Albright and S M Barr, hep-ph/0209173

  51. H D Kim and S Raby, hep-ph/0212348

  52. I Gogoladze, Y Mimura and S Nandi, hep-ph/0302176

  53. B Kyae and Q Shan, hep-ph/0211059

  54. H Baeret al, hep-ph/0204108

  55. T Blazek, S F King and J K Perry, hep-ph/0303192 and also references therein

  56. J C Pati and Abdus Salam,Phys. Rev. D10, 275 (1974)

    ADS  Google Scholar 

  57. R N Mohapatra and J C Pati,Phys. Rev. D11, 566, 2558 (1975)

    Google Scholar 

  58. G Senjanovic and R N Mohapatra,Phys. Rev. D12, 1502 (1975)

    ADS  Google Scholar 

  59. Without a protection by a local symmetry,vR/′s (being singlets of the SM) are likely to acquire Majorana masses of the order string or Planck scale through effects of quantum gravity. Such ultraheavyvR masses would, however, lead via the see-saw mechanism (see later), to too small masses for the light neutrinos (<-10-5 eV) and thereby to too small a value for Δm23/2 compared to observation. Hence the need forB —L as an effective local symmetry in 4D near the string scale

  60. M Gell-Mann, P Ramond and R Slansky, in:Supergravity edited by F van Nieuwen-huizen and D Freedman (Amsterdam, North Holland, 1979) p. 315

    Google Scholar 

  61. T Yanagida, inWorkshop on the Unified Theory and Baryon Number in the Universe edited by O Sawada and A Sugamoto (KEK, Tsukuba, 1979) p. 95

    Google Scholar 

  62. R N Mohopatra and G Senjanovic,Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  63. F Gursey, P Ramond and P Sikivie,Phys. Lett. B60, 177 (1976)

    ADS  Google Scholar 

  64. J C Pati, hep-ph/0209160

  65. The lightestN1 may be produced either thermally after reheating or non-thermally through inflaton-decay during reheating. Both possibilities are considered in [21]

  66. B D Fields and S Sarkar,Phys. Rev. D66, 010001 (2002), which yields:Y BBBN ≈(3.7-9) x 10-11

    Google Scholar 

  67. Most recently, the WMAP surveying the entire celestial sphere with high sensitivity yields: (YB)WMAP ≈ (8.7 ±0.4) × 10-11 (WMAP Collaboration, astro-ph/0302207-09-13-15, 17, 18, 20, 22-25)

  68. M Dine and A Kusenko, hep-ph/0303065

  69. F Gursey, P Ramond and R Slansky,Phys. Lett. B60, 177 (1976)

    ADS  Google Scholar 

  70. Y Achiman and B Stech,Phys. Lett. B77, 389 (1978)

    ADS  Google Scholar 

  71. Q Shan,Phys. Lett. B79, 301 (1978)

    ADS  Google Scholar 

  72. A de Rujula, H Georgi and S L Glashow,5th Workshop on Grand Unification edited by K Kanget al (World Scientific, 1984) p. 88

  73. J C Pati and A Salam,Phys. Rev. D10, 275 (1974)

    ADS  Google Scholar 

  74. R N Mohapatra and J C Pati,Phys. Rev. D11, 566, 2558 (1975)

    Google Scholar 

  75. S M Barr,Phys. Lett. B112, 219 (1982)

    ADS  MathSciNet  Google Scholar 

  76. J P Derendinger, J E Kim and D V Nanopoulos,Phys. Lett. B139, 170 (1984)

    ADS  Google Scholar 

  77. I Antoniadis, J Ellis, J Hagelin and D V Nanopoulos,Phys. Lett. B194, 231 (1987)

    ADS  Google Scholar 

  78. J C Pati, hep-ph/0204240; To appear in the Proceedings of the ICTP, Trieste School and Proceedings of the DAE Meeting, Allahabad, India (2002)

  79. K S Babu, J C Pati and F Wilczek,Phys. Lett. B423, 337 (1998)

    ADS  Google Scholar 

  80. UNO Proposal: See the talk by C K Jung inNext generation nucleon decay and neutriono detector, AIP Conference Proceedings (Sept. 1999) edited by M Diwan and C K Jung

  81. Y Totsuka, Plans for Hyperkamiokande (Private communications) [31a]See also talks by M Shiozawa and Y Suzuki,AIP Conf. Proceedings om|UNO Proposal: See the talk by C K Jung inNext generation nucleon decay and neutriono detector, AIP Conference Proceedings (Sept. 1999) edited by M Diwan and C K Jung(ref. [30])

  82. International Workshop on Neutrino and Subterranean Science (NeSS 2002 Meeting, Washington, DC, September, 2002). For transparencies of various talks, see http://www.physics.umd.edu/NeSS02

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pati, J.C. Links between neutrino oscillations, leptogenesis, and proton decay within supersymmetric grand unification. Pramana - J Phys 62, 513–522 (2004). https://doi.org/10.1007/BF02705105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705105

Keywords

PACS No.

Navigation