, Volume 63, Issue 6, pp 1407–1416 | Cite as

Contributed report: Flavor anarchy for Majorana neutrinos

  • Yosef Nir
  • Yael Shadmi


We argue that neutrino flavor parameters may exhibit features that are very different from those of quarks and charged leptons. Specifically, within the Proggatt-Nielsen (FN) framework, charged fermion parameters depend on the ratio between two scales, while for neutrinos a third scale — that of lepton number breaking — is involved. Consequently, the selection rules for neutrinos may be different. In particular, if the scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy.


Neutrino masses flavor symmetries Majorana 


14.60.Pq 12.15.Ff 11.30.Hv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M C Gonzalez-Garcia and Y Nir,Rev. Mod. Phys. 75, 345 (2003), arXiv:hepph/0202058CrossRefADSGoogle Scholar
  2. [2]
    L J Hall, H Murayama and N Weiner,Phys. Rev. Lett. 84, 2572 (2000), arXiv:hepph/9911341CrossRefADSGoogle Scholar
  3. [3]
    G Altarelli, F Feruglio and I Masina,J. High Energy Phys. 0301, 035 (2003), arXiv:hep-ph/0210342CrossRefADSGoogle Scholar
  4. [4]
    M S Berger and K Siyeon,Phys. Rev. D63, 057302 (2001), arXiv:hep-ph/0010245ADSGoogle Scholar
  5. [5]
    Y Nir and Y Shadmi, arXiv:hep-ph/0404113Google Scholar
  6. [6]
    C D Froggatt and H B Nielsen,Nucl. Phys. B147, 277 (1979)CrossRefADSGoogle Scholar
  7. [7]
    M Gell-Mann, P Ramond and R Slansky, Print-80-0576 (CERN)Google Scholar
  8. [8]
    T Yanagida, inProc. of Workshop on Unified Theory and Baryon Number in the Universe edited by O Sawada and A Sugamoto (KEK, 1979)Google Scholar
  9. [9]
    R N Mohapatra and G Senjanovic,Phys. Rev. Lett. 44, 912 (1980)CrossRefADSGoogle Scholar
  10. [10]
    M Leurer, Y Nir and N Seiberg,Nucl. Phys. B398, 319 (1993), arXiv:hep-ph/9212278;Nucl. Phys. B420, 468 (1994), arXiv:hep-ph/9310320CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    L E Ibanez and G G Ross,Phys. Lett. B332, 100 (1994), arXiv:hep-ph/9403338ADSGoogle Scholar
  12. [12]
    Y Nir and Y Shadmi,J. High Energy Phys. 9905, 023 (1999), arXiv:hep-ph/9902293CrossRefADSGoogle Scholar
  13. [13]
    Y Grossman and Y Nir,Nucl. Phys. B448, 30 (1995), arXiv:hep-ph/9502418CrossRefADSGoogle Scholar
  14. [14]
    N Haba and H Murayama,Phys. Rev. D63, 053010 (2001), arXiv:hep-ph/0009174ADSGoogle Scholar
  15. [15]
    P Binetruy, S Lavignac and P Ramond,Nucl. Phys. B477, 353 (1996), arXiv:hepph/9601243CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2004

Authors and Affiliations

  • Yosef Nir
    • 1
  • Yael Shadmi
    • 2
  1. 1.Department of Particle PhysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Physics DepartmentTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations