, Volume 64, Issue 2, pp 281–290 | Cite as

Phase changes in Fe72−x Al28Cr x (x = 0,2,4,6) alloys due to mechanical strain

  • Brajesh Pandey
  • H. C. Verma


Fe72−x Al28Cr x (x = 0,2,4,6) are made by arc melting a mixture of constituent elements in stoichiometric proportion, in argon atmosphere. The ingots so obtained are filed to make powder samples thereby giving them substantial mechanical deformation. It is observed that as-powdered samples show hyperfine field distribution typical of α-phase, where the atoms are randomly distributed on the available sites. Annealing at 900°C for 60 h leads to preferential occupation of lattice sites by the atoms and this results in better defined groups of hyperfine magnetic field (HMF) which can be associated with specific configuration in the neighbourhood of probe iron atoms. The average HMF is found to decrease sharply with increasing Cr concentration even though the net chromium concentration remains low (≤6 at%). The results show that cold working on samples is very important in changing the atomic ordering and must be taken into account if properties of equilibrium phases are probed.


Iron aluminides Mössbauer spectroscopy phase transformation mechanically driven transformation 


76.80 61.72.J 78.70.B 81.40.E 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J C Wang, D J Liu, M X Chen and X X Cai,Scr. Metall. 25, 2581 (1991)CrossRefGoogle Scholar
  2. [2]
    O Schneeweiss, T Žák and Y Jirásková,J. Magn. Magn. Mater. 103, 250 (1992)CrossRefADSGoogle Scholar
  3. [3]
    Y Jirásková, M Kočová, N Pizurová, T Žák and O Schneeweiss,Mater. Sci. Tech. 9, 397 (1993)Google Scholar
  4. [4]
    Y Jirásková, O Schneeweiss and A Baranowski,Key Eng. Mater. 81–83, 203 (1993)Google Scholar
  5. [5]
    Y Jirásková, O Schneeweiss and M Šob,Mater. Sci. Forum 175–178, 399 (1995)CrossRefGoogle Scholar
  6. [6]
    C T Liu,Mater. Chem. Phys. 42, 77 (1995)CrossRefGoogle Scholar
  7. [7]
    Y Jirásková, O Schneeweiss, M Šob and I Novotny,Acta Mater. 45(5), 2147 (1997)CrossRefGoogle Scholar
  8. [8]
    M Vondráček, O Schneeweiss and T Žák,Sensors Actuat. A59, 269 (1997)CrossRefGoogle Scholar
  9. [9]
    M G Mendiratta, S K Ehlers and H A Lipsitt,Metall. Trans. 18A, 509 (1987)Google Scholar
  10. [10]
    R T Fortnum and D E Mikkola,Mater. Sci. Eng. 91, 223 (1987)CrossRefGoogle Scholar
  11. [11]
    Brajesh Pandey, Satyam Suwas and H C Verma,J. Magn. Magn. Mater. 246, 151 (2002)CrossRefADSGoogle Scholar
  12. [12]
    Brajesh Pandey, P M G Nambissan, Satyam Suwas and H C Verma,J. Magn. Magn. Mater. 263, 307 (2003)CrossRefADSGoogle Scholar
  13. [13]
    K Vedula,Intermetallic compounds edited by J H Westbrook and R L Fleischer (John Wiley & Sons Ltd., 1994) vol. 2, p. 199Google Scholar
  14. [14]
    H C Verma and Satyam Suwas,J. Magn. Magn. Mater. 212, 361 (2000)CrossRefADSGoogle Scholar
  15. [15]
    B Window,J. Phys E. Sci. Instrum. 4, 401 (1971)CrossRefADSGoogle Scholar
  16. [16]
    T B Massalski (Ed.),Binary alloy phase diagrams (American Society for Metals, Metals Park, OH, 1986) vol. 1, p. 112Google Scholar
  17. [17]
    D Satula, L Dobrzynski, A Malinowski, K Szymañski and J Waliszewski,J. Magn. Magn. Mater. 151, 211 (1995)CrossRefADSGoogle Scholar
  18. [18]
    S M Dubiel and J Zukrowski,J. Magn. Magn. Mater. 23, 214 (1981)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Brajesh Pandey
    • 1
  • H. C. Verma
    • 1
  1. 1.Department of PhysicsIndian Institute of TechnologyKanpurIndia

Personalised recommendations