Journal of Biosciences

, 26:667 | Cite as

Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment

  • Vassili V. Velkov


This article is focused on the problems of reduction of the risk associated with the deliberate release of genetically modified microorganisms (GMMs) into the environment. Special attention is given to overview the most probable physiological and genetic processes which could be induced in the released GMMs by adverse environmental conditions, namely: (i) activation of quorum sensing and the functions associated with it, (ii) entering into a state of general resistance, (iii) activation of adaptive mutagenesis, adaptive amplifications and transpositions and (iv) stimulation of inter-species gene transfer. To reduce the risks associated with GMMs, the inactivation of their key genes responsible for stress-stimulated increase of viability and evolvability is proposed.


Biohazard biosafety evolution genetically modified microorganisms gene transfer mutability stress tolerance viability 

Abbreviations used


N-acyl-L-homoserine lactones


cystic fibrosis


2,4-dichlorophenoxyacetic acid


genetically modified microorganisms


heat shock proteins


polycyclic aromatic hydrocarbons






starvation-stress response


  1. Aleshkin G I, Kadzhaev K V and Markov A P1998 High and low UV-dose responses in SOS-induction of the precise excision of transposons Tn1, Tn5 and Tn10 inEscherichia coli;Mutat. Res. 401 179–191PubMedGoogle Scholar
  2. Arber W 2000 Genetic variation: molecular mechanisms and impact on microbial evolution;FEMS Microbiol. Rev. 24 1–7PubMedGoogle Scholar
  3. Arsene F, Tomoyasu T and Bukau B 2000 The heat shock response ofEscherichia coli;Int. J. Food Microbiol. 55 3–9PubMedGoogle Scholar
  4. Barcus V and Murray N 1995 Barriers to recombination: restriction; inPopulation genetics of bacteria (eds) S Baumberg, J Young, E Wellington and J Saunders (Cambridge: University Press) pp 31–58Google Scholar
  5. Baud-Grasset S, Baud-Grasset F, Bifulco J M, Meier J R and Ma T H 1993 Reduction of genotoxicity of a creosote-contaminated soil after fungal treatment determined by theTradescantia micronucleus test;Mutat. Res. 303 77–82PubMedGoogle Scholar
  6. Boe L, Danielsen M, Knudsen S, Petersen J B, Maymann J and Jensen P R 2000 The frequency of mutators in populations ofEscherichia coli;Mutat. Res. 448 47–55PubMedGoogle Scholar
  7. Bouma J E and Lenski R E 1988 Evolution of a bacteria/plasmid association;Nature (London) 335 351–352Google Scholar
  8. Boyandin A N, Lobova T I, Krylova T Y, Kargatova T V, Popova L and Yu Pechurkin N S 2000 Effects of Salinity on the Adaptive Capacity of Recombinant Strains ofEsherichia coli andBacillus subtilis (Russ.);Microbologia 69 243–247Google Scholar
  9. Bridges B A 2001 Hypermutation in bacteria and other cellular systems;Philos. Trans. R. Soc. London B Biol. Sci. 356 29–39PubMedGoogle Scholar
  10. Brooks L R, Hughes T J, Claxton L D, Austern B, Brenner R and Kremer 1998 Bioassay directed fractionation and chemical identification of mutagens in bioremediated soils;Environ. Health Perspect. (Suppl. 6) 106 1435–1440Google Scholar
  11. Brown E W, LeClerc E, Li B, Payne W L and Cebula T A 2001 Phylogenetic Evidence for Horizontal Transfer ofmutS Alleles among Naturally OccurringEscherichia coli Strains;J. Bacteriol. 183 1631–1644PubMedGoogle Scholar
  12. Bull H J, McKenzie G J, Hastings P J and Rosenberg S M. 2000 Evidence that stationary-phase hypermutation in theEscherichia coli chromosome is promoted by recombination;Genetics 154 1427–1437PubMedGoogle Scholar
  13. Chilley P M and Wilkins B M 1995 Distribution of theardA family of antirestriction genes on conjugative plasmids;Microbiology 141 2157–2164PubMedCrossRefGoogle Scholar
  14. Chow K C 2000 Hsp70(DnaK) — an evolution facilitator?;Trends Genet. 16 484–485PubMedGoogle Scholar
  15. Chow K C and Tung W L 2000 Magnetic field exposure stimulates transposition through the induction ofDnaK/J synthesis;Biochem. Biophys. Res. Commun. 270 745–748PubMedGoogle Scholar
  16. Chumakov M I 2001 Transfer of T-DNA from agrobacteria into plant cells through cell walls and membranes (Russ.);Mol. Gen. Mikrobiol. Virusol. 1 13–29PubMedGoogle Scholar
  17. Cook R J, Bruckart W L, Coulson J R, Goettel M S, Humber R A, Lumsden R D, Maddox J V, McManus M L, Moore L, Meyer S F, Quimby P C Jr, Stack J P and Vaughn J L1996 Safety of Microorganisms Intended for Pest and Plant Disease Control: A Framework for Scientific Evaluation;Biol. Control 7 333–351Google Scholar
  18. Davey M E and O’Toole G A 2000 Microbial biofilms: from ecology to molecular genetics;Microbiol. Mol. Biol. Rev. 64 847–867PubMedGoogle Scholar
  19. Davies J and Webb V 1998 Antibiotic resistance in bacteria; inEmerging infections (ed.) R M Krause (New York: Academic Press) pp 239–273Google Scholar
  20. Davison J 1999 Genetic exchange between bacteria in the environment;Plasmid 42 73–91PubMedGoogle Scholar
  21. Del’ver E P, Agafonova O V, Tupikova E E, Vorob’eva E P and Belogurov A A 1998 System of regulating expression of antirestriction genesardA andardB, coding for the transmissiveIncN plasmid pKM101;Mol. Biol. (Mosk) 32 242–248Google Scholar
  22. Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquaviva C, Sayada C, Sunjevaric I, Rothstein R, Elion J, Taddei F, Radman M and Matic I 2000 Evolutionary implications of the frequent horizontal transfer of mismatch repair genes;Cell 103 711–721PubMedGoogle Scholar
  23. Diamant S, Ben-Zvi A P, Bukau B, Goloubinoff P 2000 Sizedependent disaggregation of table protein aggregates by theDnaK chaperone machinery;J. Biol. Chem. 275 21107–21113PubMedGoogle Scholar
  24. Diaz Ricci J C and Hernandez M E 2000 Plasmid effects onEscherichia coli metabolism;Crit. Rev. Biotechnol. 20 79–108Google Scholar
  25. Dimpfl J and Echols H 1989 Duplication mutation as an SOS response inEscherichia coli enhanced duplication formation by a constitutively activatedRecA;Genetics 123 255–260PubMedGoogle Scholar
  26. Doblhoff-Dier O, Bahmayer H, Bennet A, Brunius G, Burki K, Cantley M, Collins C, Crooy P, Elmqvist A, Frontali-Botti C, Havenaar R, Haymerle H, Lelieveld H, Lex M, Mahler J L, Martinez L, Mosgaard C, Olsen L, Pazlarova J, Ruddan F, Sarvas M, Stepankova H, Tzotzos G, Wagner K and Werner R 1999 Safe biotechnology 9: values in risk assessment for the environmental application of microorganisms;Trends Biotechnol. 17 307–311PubMedGoogle Scholar
  27. Dorn P B and Salanitro J P 2000 Temporal ecological assessment of oil contaminated soils before and after bioremediation;Chemosphere 40 419–426PubMedGoogle Scholar
  28. Dri A-M and Morerau P L 1994 Control of theLexA regulon by pH: evidence for a reversible incativation of theLexA repressor during the growth cycle ofEscherichia coli;Mol. Microbiol. 12 621–629PubMedGoogle Scholar
  29. Droge M, Puhler A and Selbitschka W 1998 Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern;J. Biotechnol. 64 75–90PubMedGoogle Scholar
  30. Eberl L 1999 N-Acyl Homoserine lactone-mediated Gene Regulation in Gram-negative Bacteria;System Appl. Microrbiol. 22 493–506Google Scholar
  31. Edwards, R, Helm A and S Maloy S 1999 Increasing DNA transfer efficiency by temporary inactivation of host restriction;BioTechniques 26 892–900PubMedGoogle Scholar
  32. Eichenbaum Z and Livneh Z. 1998 UV light induces IS10 transposition inEscherichia coli;Genetics 149 1173–1181PubMedGoogle Scholar
  33. Fani R, Gallo R, Fancelli S, Mori E, Tamburini E and Lazcano A 1998 Heterologous gene expression in anEscherichia coli population under starvation stress conditions;J. Mol. Evol. 47 363–368PubMedGoogle Scholar
  34. Ford T 1994 Pollutant effects on the microbial ecosystem;Environ. Health Perspect. (Suppl.) 102 45–48Google Scholar
  35. Foster P L 1999 Mechanisms of stationary phase mutation: a decade of adaptive mutation;Annu. Rev. Genet. 33 57–88PubMedGoogle Scholar
  36. Foster P L 2000 Adaptive mutation: implications for evolutionBioEssays 22 1057–1074Google Scholar
  37. Fulthorpe R R, Rhodes A N and Tiedje J M 1996 Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations;Appl. Environ. Microbiol. 62 1159–1166PubMedGoogle Scholar
  38. Fulthorpe R R and Schofield L N 1999 A comparison of the ability of forest and agricultural soils to mineralize chlorinated aromatic compounds;Biodegradation 10 235–244PubMedGoogle Scholar
  39. Fuqua C and Greenberg 1998 Cell-to-cell communication inEscherichia coli andSalmonella typhimurium: They may be talking, but who’s listening?;Proc. Natl. Acad. Sci. USA 95 6571–6572PubMedGoogle Scholar
  40. Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M and Taddei F 2001 Costs and Benefits of High Mutation Rates: Adaptive Evolution of Bacteria in the Mouse Gut;Science 291 2606–2608PubMedGoogle Scholar
  41. Glessner A Smit R S Iglewski B H and Robinson J B 1999 Roles ofPsedomonas aaeruginosa las andrhl quorum sensing systems in control of twitching motility;J. Bacteriol. 181 1623–1629PubMedGoogle Scholar
  42. Goloubinoff P, Mogk A, Zvi A P, Tomoyasu T and Bukau B 1999 Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network;Proc. Natl. Acad. Sci. USA 96 13732–13737PubMedGoogle Scholar
  43. Hafner L M and MacPhee D G 1991 Precise excision of Tn10 inSalmonella typhimurium: effects of mutations in thepolA, dam, mutH andmutB genes and of methionine or ethionine in the plating medium;Mutat. Res. 263 179–184PubMedGoogle Scholar
  44. Harris R S, Feng G, Ross K J, Sidhu R, Thulin C, Longerich S, Szigety S K, Hastings P J, Winkler M E and Rosenberg S M 1999 Mismatch repair is diminished during stationary-phase mutation;Mutat. Res. 437 51–60PubMedGoogle Scholar
  45. Hartke A, Giard J C, Laplace J M and Auffray Y 1998 Survival ofEnterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis;Appl. Environ. Microbiol. 64 4238–4245PubMedGoogle Scholar
  46. Hastings P J, Bull H J, Klump J R and Rosenberg S M 2000 Adaptive amplification: an inducible chromosomal instability mechanism;Cell 103 723–731PubMedGoogle Scholar
  47. Hengge-Aronis R 2000 A role for the Sigma S subunit of RNA polymerase in the regulation of bacterial virulence;Adv. Exp. Med. Biol. 485 85–93PubMedGoogle Scholar
  48. Hiom K, Thomas S M and Sedgwick S G 1991 Different mechanisms for SOS induced alleviation of DNA restriction inEscherichia coli;Biochimie 73 399–405PubMedGoogle Scholar
  49. Hiom K J and Sedgwick S G 1992 Alleviation ofEcoK DNA restriction inEscherichia coli and involvementof umuDC activity;Mol. Gen. Genet. 231 265–275PubMedGoogle Scholar
  50. Holliger C, Gaspard S, Glod G, Heijman C, Schumacher W, Schwarzenbach R P and Vazquez F 1997 Contaminated environments in the subsurface and bioremediation: organic contaminants;FEMS Microbiol. Rev. 20 517–523PubMedGoogle Scholar
  51. Houndt T D and Ochman H 2000 Long-Term Shifts in Patterns of Antibiotic Resistance in Enteric Bacteria;Appl. Environ. Microbiol. 66 5406–5409PubMedGoogle Scholar
  52. Hughes T J, Claxton L D, Brooks L, Warren S, Brenner R and Kremer F 1998 Genotoxicity of bioremediated oils from the Reilly Tar site, St. Louis Park, Minnesota;Environ. Health Perspect. (Suppl. 6) 106 1427–1433Google Scholar
  53. Hund K and Traunspurger W 1994 Ecotox-evaluation strategy for soil bioremediation exemplified for a PAH-contaminated site;Chemosphere 29 371–390PubMedGoogle Scholar
  54. Jolivet-Gougeon A, David-Jobert S, Tamanai-Shacoori Z, Monard Ch and Cormier M 2000 Osmotic Stress-Induced Genetic Rearrangements inEscherichia coli H10407 Detected by Randomly Amplified Polymorphic DNA Analysis;Appl. Environ. Microbiol. 66 5484–5487PubMedGoogle Scholar
  55. Jurgen B, Lin H Y, Riemschneider S, Scharf C, Neubauer P, Schmid R, Hecker M and Schweder T 2000 Monitoring of genes that respond to overproduction of an insoluble recombinant protein inEscherichia coli glucose-limited fed-batch fermentations;Biotechnol. Bioeng. 70 217–224PubMedGoogle Scholar
  56. Kamagata Y, Fulthorpe R R, Tamura K, Takami H, Forney L J and Tiedje J M 1997 Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria;Appl. Environ. Microbiol. 63 2266–2272PubMedGoogle Scholar
  57. Kaplan D L, Mello C, Sano T, Cantor C and Smith C 1999 Streptavidin-based containment systems for genetically engineered microorganisms;Biomol. Eng. 16 135–140PubMedGoogle Scholar
  58. Keasling J D and Bang S 1998 Recombinant DNA techniques for bioremediation and environmentally-friendly synthesis;Curr. Opin. Biotechnol. 9 135–140PubMedGoogle Scholar
  59. Kelleher J and Raleigh E 1994 Response to UV damage by fourEscherichia coli K-12 restriction systems;J. Bacteriol. 176 5888–5896PubMedGoogle Scholar
  60. Kolter R, Siegle D and Torno A 1993 The Stationary phase of bacterial life cycle;Annu. Rev. Microbiol. 47 855–874PubMedGoogle Scholar
  61. Kuchma S L and O’Toole G A 2000 Surface-induced and biofilm-induced changes in gene expression;Curr. Opin. Biotechnol. 11 429–433PubMedGoogle Scholar
  62. Kuzminov A and Stahl F W 1999 Double stranded repair via theRecBC pathway inEscherichia coli primes DNA replication;Genes Dev. 13 345–356PubMedGoogle Scholar
  63. Latifi A, Foguno M, Tanakaa K, Williams P and Luzdunski A 1996 A hierarchical quorum sensising cascade inPseudomonas aeruginosa links the transcriptional activatorsLasR andRhlR (VsmR) to expression of the stationary phase sigma factorRpoS;Mol. Micorbiol. 21 1137–1146Google Scholar
  64. Lazazzera B A 2000 Quorum sensing and starvation: signals for entry into stationary phase;Curr. Opin. Microbiol. 3 177–182PubMedGoogle Scholar
  65. Lenski R E 1997 The cost of antibiotic resistance — from the perspective of a bacterium;Ciba Found. Symp. 207 131–140; discussion 141–151PubMedGoogle Scholar
  66. Levy D D and Cebula T A 2001 Fidelity of replicative DNA inmutS and repair proficientEscherichia coli;Mut. Res. 474 11–14Google Scholar
  67. Lieber M M 1998 Environmentally responsive mutator systems: toward a unifying perspective;Riv. Biol. 91 425–457PubMedGoogle Scholar
  68. Lindum P W, Antoni U, Christphersen C, Eberl L, Molin S and Givskov M 1998 N-acetyl-L-homoserine lactoneautoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility ofSerratia liquefaciens MG1;J. Bacteriol. 180 6384–6388PubMedGoogle Scholar
  69. LeClerc J E, Li B, Payne W L and Cebula T A 1996 High mutation frequencies amongEscherichia coli andSalmonella pathogens;Science 274 1208–1211PubMedGoogle Scholar
  70. Loewen P C, Hu B, Strutinsky J and Sparling R 1998 Regulation in therpoS regulon ofEscherichia coli;Can. J. Microbiol. 44 707–717PubMedGoogle Scholar
  71. Long S C and Aelion C M 1999 Metabolite formation and toxicity measurements in evaluating bioremediatio of a jetfuel-contaminated aquifer;Appl. Biochem. Biotechnol. 76 79–97PubMedGoogle Scholar
  72. Lundblad V and Kleckner N 1985 Mismatch repair mutations ofEscherichia coli K12 enhance transposon excision;Genetics 109 3–19PubMedGoogle Scholar
  73. Mah T F and O’Toole G A 2001 Mechanisms of biofilm resistance to antimicrobial agents;Trends Microbiol. 9 34–39PubMedGoogle Scholar
  74. Matin A 1991 The molecular basis of carbon-starvation-induced general resistance inEscherichia coli;Mol. Microbiol. 5 3–10PubMedGoogle Scholar
  75. Matin A 1996 Role of alternate sigma factors in starvation protein synthesis novel mechanisms of catabolite repression;Res. Microbiol. 147 494–505PubMedGoogle Scholar
  76. Matic I, Taddei F and Radman M 1996 Genetic barriers among bacteria;Trends Microbiol. 4 69–72PubMedGoogle Scholar
  77. Matic I, Taddei F and Radman M 2000a No genetic barriers betweenSalmonella enterica serovartyphimurium andEscherichia coli in SOS-induced mismatch repair-deficient cells;J. Bacteriol. 182 5922–5924PubMedGoogle Scholar
  78. Matic I, Taddei F and Radman M 2000b Interspecies recombination and mismatch repair. Generation of mosaic genes and genomes;Methods. Mol. Biol. 152 149–157PubMedGoogle Scholar
  79. McClean K H, Winson M K, Fish L, Taylor A, Chhabra S R, Camara M, Daykin M, Lamb J H, Swift S, Bycoroft B W, Stewart G S and Williams P 1997 Quorum sensing andChromobacteruim violaceum: exploitation of violacein production and inhibition for the detection of N-acetyl homoserine lactone;Microbiology 143 3703–3711PubMedGoogle Scholar
  80. McKenzie G J, Harris R S, Lee P L and Rosenberg S M 2000 The SOS response regulates adaptive mutation;Proc. Natl. Acad. Sci. USA 97 6646–6651PubMedGoogle Scholar
  81. McKenzie G J, Lee P L, Lombardo M-J, Hastings P J and Rosenberg S M 2001 SOS Mutator DNA Polymerase IV Functions in Adaptive Mutation and Not Adaptive Amplification;Mol. Cell 7 571–579PubMedGoogle Scholar
  82. McLean R J C, Whiteley M, Stickler D J and Fuqua W C 1997 Evidence of autoinducer activity in naturally-occurring biofilms;FEMS Microbiol. Lett. 154 259–263PubMedGoogle Scholar
  83. Mee-Jung Han, Sang Sun Yoon and Sang Yup Lee 2001 Proteome Analysis of Metabolically EngineeredEscherichia coli Producing Poly (3-Hydroxybutyrate);J. Bacteriol. 183 301–308PubMedGoogle Scholar
  84. Metzgar D and Wills C 2000 Evidence for the adaptive evolution of mutation rates;Cell 101 581–584PubMedGoogle Scholar
  85. Mitsuhashi S 1993 Drug resistance in bacteria: history, genetics and biochemistry;J. Int. Med. Res. 21 1–14PubMedGoogle Scholar
  86. Morrison D A and Lee M S 2000 Regulation of competence for genetic transformation inStreptococcus pneumoniae: a link between quorum sensing and DNA processing genes;Res. Microbiol. 2000151 445–451PubMedGoogle Scholar
  87. Motamedi M R, Szigety S K and Rosenberg S M 1999 Double-strand-break repair recombination inEscherichia coli: physical evidence for a DNA replication mechanismin vivo;Genes Dev. 13 2889–2903PubMedGoogle Scholar
  88. Neilsen K M, Bones A M, Smalla K and Elsas van J D 1998 Horizontal gene transfer from transgenic plants to terrestial bacteria — rare event?FEMS Microbiol. Rev. 22 79–103Google Scholar
  89. Oleskin A V, Botvinko I V and Tsavkelova E A 2000 Colonial organization and intercellular communication of microorganisms (Russ.);Mikrobiologiya 69 309–327Google Scholar
  90. Oliver A, Canton R, Campo P, Baquero F and Blazquez J 2000 High frequency of hypermutablePseudomonas aeruginosa in cystic fibrosis lung infection;Science 288 1251–1253PubMedGoogle Scholar
  91. O’Toole G A, Gibbs K A, Hager P W, Phibbs P V Jr and Kolter R 2000 The global carbon metabolism regulatorCrc is a component of a signal transduction pathway required for biofilm development byPseudomonas aeruginosa;J. Bacteriol. 182 425–431PubMedGoogle Scholar
  92. Parsek M R and Greenberg E P 1999 Quorum sensing signals in development ofPseudomonas aeruginosa biofilms;Methods Enzymol. 310 43–55PubMedGoogle Scholar
  93. Pearce D A, Bazin M J and Lynch J M 2000 Substrate Concentration and Plasmid Transfer Frequency between Bacteria in a Model Rhizosphere;Microb. Ecol. 40 57–63PubMedGoogle Scholar
  94. Peters J E and Benson S A 1995 Redundant transfer of F’ plasmids occurs betweenEscherichia coli cells during nonlethal selections;J. Bacteriol. 177 847–850PubMedGoogle Scholar
  95. Petit M A, Dimpfl J, Radman M and Echols H 1991 Control of large chromosomal duplications inEscherichia coli by the mismatch repair system;Genetics 129 327–332PubMedGoogle Scholar
  96. Pirhonen M, Flego D, Heikinheimo R and Palva E T 1993 A small diffusible signal molecules is responsible for the global control of virulence and exoenzyme production in the plant pathogenErwinia carotovora;EMBO J. 12 2467–2476PubMedGoogle Scholar
  97. Powell S C and Wartell R M 2001 Different characteristics distinguish early versus late arising adaptive mutations inEscherichia coliFC40;Mutat. Res. 473 219–228PubMedGoogle Scholar
  98. Prozorov A A 1999 Horizontal gene transfer in bacteria: laboratory simulation, natural populations, genomic data (Russ.);Mikrobiologiya 68 632–646Google Scholar
  99. Radman M, Taddei F and Matic I 2000 Evolution-driving genes;Res. Microbiol. 151 91–95PubMedGoogle Scholar
  100. Rice S A, Givskov M, Steinberg P, Kjelleberg S 1999 Bacterial signals and antagonists: the interaction between bacteria and higher organisms;J. Mol. Microbiol. Biotechnol. 1 23–31PubMedGoogle Scholar
  101. Riis V, Miethe D and Babel W 1995 Degradation of refinery products and oils from polluted sites by the autochthonous microorganisms of contaminated and pristine soils;Microbiol. Res. 150 323–330PubMedGoogle Scholar
  102. Robbe-Saule V, Coynault C and Norel F 1995 The live oral typhoid vaccine Ty21a is arpoS mutant and is susceptible to various environmental stresses;FEMS Microbiol. Lett. 126 171–176PubMedGoogle Scholar
  103. Ronchel M C, Ramos C, Jensen L B, Molin S and Ramos J L 1995 Construction and behaviour of biologically contained bacteria for environmental applications in bioremediation;Appl. Environ. Microbiol. 61 2990–2994PubMedGoogle Scholar
  104. Ronchel M C and Ramos J L 2001 Dual System To Reinforce Biological Containment of Recombinant Bacteria Designed for Rhizoremediation;Appl. Environ. Microbiol. 67 2649–2656PubMedGoogle Scholar
  105. Rosenberg S M 1997 Mutation for survival;Curr. Opin. Genet. Dev. 7 829–834PubMedGoogle Scholar
  106. Rosenberg S M 2001 Evolving responsively: Adaptive mutation;Nature Rev. Genet. 2 504–515PubMedGoogle Scholar
  107. Smith B T and Walker G C 1998 Mutagenesis and more:umuDC and theEscherichia coli SOS response;Genetics 148 1599–1610PubMedGoogle Scholar
  108. Sniegowski P D, Gerrish P J R and Lenski R E 1997 Evolution of High Mutation Rates in Experimental Populations ofE. coli;Nature (London) 387 703–705Google Scholar
  109. Sniegowski P D, Gerrish P J, Johnson T and Shaver A 2000 The evolution of mutation rates: separating causes from consequences;Bioessays 22 1057–1066PubMedGoogle Scholar
  110. Spector M P 1998 The starvation-stress response (SSR) of Salmonella;Adv. Microb. Physiol. 40 233–279PubMedGoogle Scholar
  111. Srinivasan S, Ostling J, Charlton T, de Nys R, Takayama K and Kjellberg S 1998 Extracellular signal molecule(s) involved in the carbon starvation response of marineVibrio sp. strain S14;J. Bacteriol. 180 210–209Google Scholar
  112. Stark G R and Wahl G M 1984 Gene amplification;Annu. Rev. Biochem. 37 217–224Google Scholar
  113. Suh S J, Silo-Suh L, Woods D E, Hassett D J, West S E and Ohman D E 1999 Effect ofrpoS mutation on the stress response and expression of virulence factors inPseudomonas aeruginosa;J. Bacteriol. 181 3890–3897PubMedGoogle Scholar
  114. Taddei F, Matic I, Godelle B and Radman M 1997a To be a mutator; or how pathogenic and commercial bacteria can evolve rapidly;Trends Microbiol. 5 427–428PubMedGoogle Scholar
  115. Taddei F, Halliday J A, Matic I and Radman M 1997b Genetic analysis of mutagenesis in agingEscherichia coli colonies;Mol. Gen. Genet. 256 277–281PubMedGoogle Scholar
  116. Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon P H and Godelle B 1997c Role of mutator alleles in adaptive evolution;Nature (London) 387 700–702Google Scholar
  117. Thorne S H and Williams H D 1997 Adaptation to nutrient starvation inRhizobium leguminosarum bv. Phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase;J. Bacteriol. 179 6894–6901PubMedGoogle Scholar
  118. Thorne S H and Williams HD 1999 Cell density dependent sravation survival ofRhizibium leguminosarum bv. by phaseoli: identification of the role of an N-acyl homoserinelactone in adaptation to starvation-phase survival;J. Bacteriol. 181 981–990PubMedGoogle Scholar
  119. Tolker-Nielsen T and Molin S 2000 Spatial Organisation of Microbial Biofilm Communities;Microb. Ecol. 40 75–84PubMedGoogle Scholar
  120. Tortosa P and Dubnau D 1999 Competence for transformation: a matter of taste;Curr. Opin. Microbiol. 2 588–592PubMedGoogle Scholar
  121. Tzfira T, Rhee Y, Chen M H, Kunik T and Citovsky V 2000 Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls;Annu. Rev. Microbiol. 54 187–219PubMedGoogle Scholar
  122. Van Delden C and Iglewski B H 1998 Cell-to-cell signalling andPseudomonas aeruginosa infections;Emerg. Infect. Dis. 4 551–560PubMedCrossRefGoogle Scholar
  123. von Bodman S B, Majerczak D R and Coplin D L 1998 A negative regulator mediated quorum sensing control of exopolysaccharides production ofPantoea stewartii subsp. stewartii;Proc. Natl. Acad. Sci. USA 95 7687–7692Google Scholar
  124. Wagner J and Nohmi T 2000 Escherichia coli DNA polymerase IV mutator activity: genetic requirements and mutational specificity;J. Bacteriol. 182 4587–4595PubMedGoogle Scholar
  125. Webb C, Moreno M, Wilmes-Riesenberg M, Curtiss R 3rd and Foster J W 1999 Effects of DksA and ClpP protease on sigma S production and virulence inSalmonella typhimurium;Mol. Microbiol. 34 112–123PubMedGoogle Scholar
  126. Wilson M and Lindow S E 1993 Release of Recombinant Microorganisms;Annu. Rev. Micorbiol. 47 913–944Google Scholar
  127. Wimpenny J, Manz W and Szewzyk U 2000 Heterogeneity in biofilms;FEMS Microbiol. Rev. 24 661–671PubMedGoogle Scholar
  128. Winzer K, Falconer C, Garber N C, Diggle C P, Camara M and Williams P 2000 ThePseudomonas aeruginosa Lectins PA-IL and PA-IIL Are Controlled by Quorum Sensing and byRpoS;J. Bacteriol. 182 6401–6411PubMedGoogle Scholar
  129. Wood D W, Gong E, Daytkin M M, Williams P and Person L S 1997 N-acyl-homoserine lactone regulation of phenazine gene expression byPseudomonas aureofaciens 30–84 in the wheat rhizosphere;J. Bacteriol. 179 7663–7670PubMedGoogle Scholar
  130. Wrubel R P, Krimsky S and Anderson M D 1997 Regulatory Oversight of Genetically Engineered Microorganisms: Has Regulation Inhibited Innovation?;Environ. Manage. 21 571–586PubMedGoogle Scholar
  131. Wyndham R C, Nakatsu C, Peel M, Cashore A, Ng J and Szilagyi F 1994 Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system;Appl. Environ. Microbiol. 60 86–93PubMedGoogle Scholar
  132. Velicer G J 1999 Pleiotropic effects of adaptation to a single carbon source for growth on alternative substrates;Appl. Environ. Microbiol. 65 264–269PubMedGoogle Scholar
  133. Velkov V V 1982 Genes Amplification in Prokaryotic and Eukaryotic Systems (Russ.);Genetika 18 529–543Google Scholar
  134. Velkov V V 1996 Environmental Genetic Engineering: Hope or Hazard?;Curr. Sci. 70 823–832Google Scholar
  135. Velkov V V 1999 How environmental factors regulate mutagenesis and gene transfer in microorganisms;J. Biosci. 24 529–559CrossRefGoogle Scholar
  136. Velkov V V 2000 The Risks Assessment of the Release of the Genetically Modified Microorganisms into the Environments (Russ.);Agrokhimia (Agric. Chem.) 8 80–90Google Scholar
  137. Velkov V V, Matys V Yu and Sokolov D M 1999 How Overproduction of foreign proteins affects physiology of recombinant strains ofHansenula polymorpha;J. Biosci. 24 279–286Google Scholar
  138. Zavil’gel’skii G B 2000 Antirestriction (Russ.);Mol. Biol. (Mosk.) 34 854–862Google Scholar
  139. Zhu J, Oger P M, Schrammeijer B, Hooykaas P J, Farrand S K, Winans S C 2000 The bases of crown gall tumorigenesis;J. Bacteriol. 182 3885–3895PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2001

Authors and Affiliations

  • Vassili V. Velkov
    • 1
  1. 1.Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia

Personalised recommendations