Advertisement

Pramana

, Volume 66, Issue 3, pp 609–614 | Cite as

Anisotropic static solutions in modelling highly compact bodies

  • M. Chaisi
  • S D. Maharaj
Brief Reports

Abstract

Einstein field equations for static anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting caseμ,∝ r-2 for the energy density which arises in many astrophysical applications. In the second class the singularity at the centre of the star is not present in the energy density.

Keywords

Exact solutions anisotropic pressures superdense matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R L Bowers and E P T Liang,Astrophys. J. 188, 657 (1974)CrossRefADSGoogle Scholar
  2. [2]
    K Dev and M Gleiser,Gen. Relativ. Gravit. 34, 1793 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    K Dev and M Gleiser,Gen. Relativ. Gravit. 35, 1435 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  4. [4]
    L Herrera, J Martin and J Ospino,J. Math. Phys. 43, 4889 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  5. [5]
    B V Ivanov,Phys. Rev. D65, 10411 (2002)Google Scholar
  6. [6]
    M K Mak and T Harko,Chin. J. Astron. Astrophys. 2, 248 (2002)ADSCrossRefGoogle Scholar
  7. [7]
    R Sharma and S Mukherjee,Mod. Phys. Lett. A17, 2535 (2002)ADSGoogle Scholar
  8. [8]
    H Bondi,Mon. Not. R. Astron. Soc. 259, 365 (1992)ADSGoogle Scholar
  9. [9]
    J Binney and S Tremaine,Galactic dynamics (Princeton University Press, Princeton, 1987)MATHGoogle Scholar
  10. [10]
    P Cuddeford,Mon. Not. R. Astron. Soc. 253, 414 (1991)ADSMathSciNetGoogle Scholar
  11. [11]
    R W Michie,Mon. Not. R. Astron. Soc. 125, 127 (1963)ADSMathSciNetGoogle Scholar
  12. [12]
    M Chaisi and S D Maharaj,Gen. Relativ. Gravit. 37 1177 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  13. [13]
    S D Maharaj and R Maartens,Gen. Relativ. Gravit. 21, 899 (1989)CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    M K Gokhroo and A L Mehra,Gen. Relativ. Gravit. 26, (1994)Google Scholar
  15. [15]
    W C Saslaw, S D Maharaj and N Dadhich,Astrophys. J. 471, 571 (1996)CrossRefADSGoogle Scholar
  16. [16]
    C W Misner and H S Zapolsky,Phys. Rev. Lett. 12, 635 (1964)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • M. Chaisi
    • 1
  • S D. Maharaj
    • 1
  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematical SciencesUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations