, Volume 61, Issue 5, pp 961–965 | Cite as

Half-monopoles in the Yang-Mills theory

  • E. Harikumar
  • Indrajit Mitra
  • H. S. Sharatchandra


Using a gauge-invariant characterization of monopoles defined via their centres, we investigate the generic topological field pattern for the three-dimensional Yang-Mills theory. This leads to field patterns with one-half winding number. After presenting the main features through the simpler case of half-vortices, we consider half-monopoles in detail.


Monopole Poincaré-Hopf index one-half winding number 


14.80.Hv 11.15.-q 11.15.Tk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A M Polyakov,Nucl. Phys. B120, 429 (1977)CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    R Anishetty, P Majumdar and H S Sharatchandra,Phys. Lett. B478, 373 (2000)ADSMathSciNetGoogle Scholar
  3. [3]
    E Harikumar, I Mitra and H S Sharatchandra,Topological field patterns of the Yang-Mills theory, hep-th/0212234;Phys. Lett. B557, 297 (2003)ADSMathSciNetGoogle Scholar
  4. [4]
    G 't Hooft,Nucl. Phys. B190, 455 (1981)CrossRefADSGoogle Scholar
  5. [5a]
    G 't Hooft,Nucl. Phys. B79, 276 (1974)CrossRefADSGoogle Scholar
  6. [5b]
    A M Polyakov,JETP Lett. 20, 194 (1974)ADSGoogle Scholar
  7. [6]
    P Goddard and D Olive,Rep. Prog. Phys. 41, 1357 (1978)CrossRefADSGoogle Scholar
  8. [7]
    M K Prasad and C M Sommerfield,Phys. Rev. Lett. 35, 760 (1975)CrossRefADSGoogle Scholar
  9. [8]
    E Harikumar, I Mitra and H S Sharatchandra,Half-monopoles and half-vortices in the Yang-Mills theory, hep-th/0301045;Phys. Lett. B557, 303 (2003)ADSMathSciNetGoogle Scholar
  10. [9]
    P Majumdar and H S Sharatchandra,Phys. Rev. D63, 067701 (2001)ADSMathSciNetGoogle Scholar
  11. [10]
    J Arafune, P G O Freund and C J Goebel,J. Math. Phys. 16, 433 (1975)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  • E. Harikumar
    • 1
  • Indrajit Mitra
    • 1
  • H. S. Sharatchandra
    • 1
  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations