Advertisement

Pramana

, Volume 62, Issue 6, pp 1255–1271 | Cite as

Normal modes and quality factors of spherical dielectric resonators: I — shielded dielectric sphere

  • R. A. Yadav
  • I. D. Singh
Article

Abstract

Electromagnetic theoretic analysis of shielded homogeneous and isotropic dielectric spheres has been made. Characteristic equations for the TE and TM modes have been derived. Dielectric spheres of radii of the order of μm size are found suitable for the optical frequency region whereas for the microwave region radii of the order of mm size are found suitable. Parameters suitable for their application in the optical and microwave frequency ranges have been used to compute the frequencies corresponding to the normal modes for the TE and TM modes. Expressions for the quality factors for realistic resonators, i.e., for a dielectric sphere with a non-zero conductivity and a metal shield with a finite conductivity have also been derived for the TE and TM modes. Computations of the quality factors have been made for resonators with parameters suitable for the optical and the microwave regions.

Keywords

Eigenmodes spherical resonators spherical dielectric resonators quality factors 

Keywords

42.50.Dv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P Debye,Ann. Phys. 30, 57 (1909)CrossRefGoogle Scholar
  2. [2]
    J A Stratton,Electromagnetic theory (McGraw-Hill, New York, 1950)Google Scholar
  3. [3]
    R A Waldron,Theory of guided electromagnetic waves (Van Nostrand Reinhold Company, London, 1969)Google Scholar
  4. [4]
    T J Pa Bromwich,Philos. Mag. 38, 143 (1919)Google Scholar
  5. [5]
    M Gastine, L Courtois and J L Dormann,Theory Tech. IEEE Trans. MTT-15, 694 (1967)CrossRefGoogle Scholar
  6. [6]
    P Affolter and B Eliasson,IEEE Trans. MTT-21, 573 (1973)Google Scholar
  7. [7]
    A Ashkin and J M Dziedzic,Phys. Rev. Lett. 38, 1351 (1977)CrossRefADSGoogle Scholar
  8. [8]
    H S Bennet and G J Rosasco,Appl. Opt. 17, 491 (1978)ADSGoogle Scholar
  9. [9]
    P Chylek, J T Kiehl and M K W Ko,Appl. Opt. 17, 3019 (1978)ADSCrossRefGoogle Scholar
  10. [10]
    P Chylek, J T Kiehl and M K W Ko,Phys. Rev. A18, 2229 (1978)ADSGoogle Scholar
  11. [11]
    R E Benner, P W Barber, J F Owen and R K Chang,Phys. Rev. Lett. 44, 475 (1980)CrossRefADSGoogle Scholar
  12. [12]
    R Thrun and W Kiefer,Appl. Opt. 24, 1515 (1985)ADSGoogle Scholar
  13. [13]
    B A Hunter, M A Box and B Maier,J. Opt. Soc. Am. 5, 1281 (1988)ADSGoogle Scholar
  14. [14]
    G Gouesbet, B Maheu and G Grehan,J. Opt. Soc. Am. 5, 1427 (1988)ADSMathSciNetGoogle Scholar
  15. [15]
    A Julien and P Guillon,IEEE Trans. MTT-34, 723 (1986) and references cited thereinGoogle Scholar
  16. [16]
    D G Blair and S K Jones,J. Phys. D20, 1559 (1987)ADSGoogle Scholar
  17. [17]
    C J Bouwkamp and H B G Casimir,Physica XX, 539 (1954)CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    A Nisbet,Proc. R. Soc. London A231, 250 (1955)ADSMathSciNetGoogle Scholar
  19. [19]
    S C Tiwari, CERN Preprint SCAN 9704068 (1997)Google Scholar
  20. [20]
    J D Jackson,Classical electrodynamics, third edition (John Wiley and Sons, Inc., New York, 1998)Google Scholar

Copyright information

© Indian Academy of Sciences 2004

Authors and Affiliations

  • R. A. Yadav
    • 1
  • I. D. Singh
    • 1
  1. 1.Spectroscopy Laboratory, Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations