, Volume 66, Issue 2, pp 325–344 | Cite as

The trace identity and the planar Casimir effect

  • S. G. Kamath


The familiar trace identity associated with the scale transformationx Μ → x′ Μ = e x Μ on the Lagrangian density for a noninteracting massive real scalar field in 2 + 1 dimensions is shown to be violated on a single plate on which the Dirichlet boundary condition Φ(t, x1, x2 = -a) = 0 is imposed. It is however respected in: (i) 1 + 1 dimensions in both free space and on a single plate on which the Dirichlet boundary condition Φ(t, x1 = -a) = 0 holds and (ii) in 2 + 1 dimensions in free space, i.e. the unconstrained configuration. On the plate where Φ(t, x1, x2 = -a) = 0, the modified trace identity is shown to be anomalous with a numerical coefficient for the anomalous term equal to the canonical scale dimension, viz. 1/2. The technique of Bordaget al [Ann. Phys. (N.Y.),165, 162 (1985)] is used to incorporate the said boundary condition into the generating functional for the connected Green’s functions.


Massive scalar field trace identity Casimir effect 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H B G Casimir,Proc. Kon. Ned. Akad. Wetensch. 51, 793 (1948)MATHGoogle Scholar
  2. [2]
    For additional references, see K A Milton,The Casimir effect: Physical manifestations of zero-point energy (World Scientific, New Jersey, 2001)MATHGoogle Scholar
  3. [3]
    G Plunien, B Muller and W Greiner,Phys. Rep. 134, 87 (1986)CrossRefADSGoogle Scholar
  4. [4]
    S Coleman and R Jackiw,Ann. Phys. (N. Y.) 67, 552 (1971)CrossRefADSGoogle Scholar
  5. [5]
    M J Spaarnay,Physica 24, 751 (1958)CrossRefADSGoogle Scholar
  6. [6]
    For more references see for example M Bordag, U Mohideen and V M Mostepanenko,Phys. Rep. 353, 1 (2001)MATHCrossRefADSGoogle Scholar
  7. [7]
    M Bordag, D Robaschik and E Wieczorek,Ann. Phys. (N.Y.) 165, 192 (1985)CrossRefADSGoogle Scholar
  8. [8]
    See for example P Ramond,Field theory: A modern primer (Benjamin, Mass., 1981)Google Scholar
  9. [9]
    M Bordag and J Lindig,Phys. Rev. D58, 045003 (1998)ADSGoogle Scholar
  10. [10]
    S K Lamoreaux,Phys. Rev. Lett. 78, 5 (1997)CrossRefADSGoogle Scholar
  11. [11]
    F Michael Serry, Dirk Walliser and G Jordan Maclay,J. Appl. Phys. 84, 2501 (1998)CrossRefADSGoogle Scholar
  12. [12]
    R M Cavalcanti,Phys. Rev. D69, 065015 (2004)ADSGoogle Scholar
  13. [13]
    M P Hertzberg, R L Jaffe, M Kardar and A Scardicchio, arXiv:quant-ph/0509071Google Scholar
  14. [14]
    G J Maclay,Phys. Rev. A61, 052110 (2000)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • S. G. Kamath
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations