Advertisement

Pramana

, Volume 63, Issue 5, pp 1089–1097 | Cite as

Electron lucky-drift impact ionization coefficients of ZnS : Mn

  • F. M. Abou El-Ela
Article
  • 29 Downloads

Abstract

Fit of the experimental data of ZnS : Mn by a modified lucky-drift formula has been performed using the least square algorithm. The fit agrees well with the experimental data only at high field. The best fitting parameters at high field are the mean free path of order 102.74 Å and Keldysh factor,p 0 = 0.0138. A generalized Keldysh formula has been used, due to introduction of a soft threshold factor. The soft lucky-drift theory can also be used to calculate the impact ionization coefficients of high electron energy of ZnS : Mn without losing its physical significance compared to full band-structure Monte Carlo calculation with a remarkably reduced amount of computer resources.

The curvature on semi-log plot of experimental impact ionization coefficient against the inverse of electric field is different from what is observed for other materials at low electric fields due to impact ionization of deep level impurities.

Keywords

Impact ionization in semiconductors high field transport electroluminescent devices zinc sulphide 

PACS Nos

79.20.Fv 72.80.Ey 72.20.Ht 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K Brennan,J. Appl. Phys. 64, 4024 (1988)CrossRefADSGoogle Scholar
  2. [2]
    K Bhattacharyya, S M Goodnick and J F Wager,J. Appl. Phys. 73, 3390 (1993)CrossRefADSGoogle Scholar
  3. [3]
    J Fogarty, W Kong and R Solanki,Solid-State Electron. 38(3), 653 (1995)CrossRefGoogle Scholar
  4. [4]
    F J Bryant, A Krier and G Z Zhong,Solid-State Electron. 28, 847 (1985)CrossRefGoogle Scholar
  5. [5]
    P A Wolff,Phys. Rev. 95, 1415 (1954)CrossRefADSGoogle Scholar
  6. [6]
    W Shockley,Solid-State Electron. 2, 35 (1961)CrossRefGoogle Scholar
  7. [7]
    G A Baraff,Phys. Rev. 128, 2507 (1962)MATHCrossRefADSGoogle Scholar
  8. [8]
    B K Ridley,J. Phys. C16, 3373 (1983);J. Phys. C16, 4733 (1983)ADSGoogle Scholar
  9. [9]
    S McKenzie and M G Burt,J. Phys. C19, 1959 (1986)ADSGoogle Scholar
  10. [10]
    M G Burt and S McKenzie,Physica B134, 247 (1985)Google Scholar
  11. [11]
    B K Ridley,Semicond. Sci. Technol. 2, 116 (1987)CrossRefADSGoogle Scholar
  12. [12]
    B K Ridley and F M Abou El-Ela,J. Phys. Condens. Matter 1, 7021 (1989);Solid-State Electron. 32, 1393 (1989)CrossRefADSGoogle Scholar
  13. [13]
    J S Marsland,Solid-State Electron. 30, 125 (1987)CrossRefADSGoogle Scholar
  14. [14]
    H Shichijo and K Hess,Phys. Rev. B23(8), 4197 (1981)ADSGoogle Scholar
  15. [15]
    K Brennan and K Hess,Phys. Rev. B29, 5581 (1984)ADSGoogle Scholar
  16. [16]
    N Samo and A Yoshii,Phys. Rev. B45, 4171 (1992)ADSGoogle Scholar
  17. [17]
    M Reigrotzki, R Redmer, I Lee, S Pennathur, M Dur, J F Wager, S M Goodnick, P Vogl, H Eckstein and W Schattke,J. Appl. Phys. 80, 5054 (1996)CrossRefADSGoogle Scholar
  18. [18]
    R Chwang and C R Crowell,Solid State Commun. 20, 169 (1976)CrossRefGoogle Scholar
  19. [19]
    S Tanaka,Solid-State Electron. 32, 935 (1989)CrossRefGoogle Scholar
  20. [20]
    L V Keldysh,Sov. Phys. JETP 10, 509 (1965);Sov. Phys. JETP 21, 1135 (1965)MathSciNetGoogle Scholar
  21. [21]
    B K Ridley,Quantum processes in semiconductors, Fourth edition (Oxford, 1999) p. 277Google Scholar
  22. [22]
    S P Wilson and S Brand,Solid-State Electron. 38, 287 (1995)CrossRefGoogle Scholar
  23. [23]
    T D Thompson and J W Allen,J. Phys. C20, L499 (1987)ADSGoogle Scholar
  24. [24]
    F M Abou EL-Ela,Indian J. Phys. 4, 361 (2002);Indian J. Phys. 6, 581 (2002)Google Scholar

Copyright information

© Indian Academy of Sciences 2004

Authors and Affiliations

  • F. M. Abou El-Ela
    • 1
  1. 1.Department of Physics, Faculty of GirlsAin Shams UniversityHeliopolis, CairoEgypt

Personalised recommendations