Skip to main content
Log in

An indigenous cluster beam apparatus with a reflectron time-of-flight mass spectrometer

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The design and fabrication of a Smalley-type cluster source in combination with a reflectron based time-of-flight (TOF) mass spectrometer are reported. The generation of clusters is based on supersonic jet expansion of the sampling plume. Sample cells for both liquid and solid targets developed for this purpose are described. Two pulsed Nd-YAG lasers are used in tandem, one (532 nm) for target vapourization and the other (355 nm) for cluster ionization. Methanol clusters of nuclearity up to 14 (mass 500 amu) were produced from liquid methanol as the test sample. The clusters were detected with a mass resolution of ∼ 2500 in the R-TOF geometry. Carbon clusters up to a nuclearity of 28 were obtained using a polyimide target. The utility of the instrument is demonstrated by carrying out experiments to generate mixed clusters from alcohol mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmid G 1994Clusters and colloids, from theory to applications (Weinheim: VCH)

    Google Scholar 

  2. Edwards P P, Johnston R L and Rao CNR 1999 InMetal clusters in chemistry (eds) PBraunstein, G Oro, P R Raithby (New York: Wiley VCH)

    Google Scholar 

  3. Scoles G 1988Atomic and molecular beam method vol 1 & 2 (New York: Oxford University Press); Haberland H 1994Clusters of atoms and molecules I & II (Berlin: Springer-Verlag)

    Google Scholar 

  4. Ramsey NF 1948Phys. Rev. 74 286

    Article  CAS  Google Scholar 

  5. Bentley P G 1961Nature (London) 190 432

    Article  Google Scholar 

  6. Henkes W Z. 1961Naturforsch. A16 842

    Google Scholar 

  7. Hopkins J B, Langridge-Smith P R R, Morse M D and Smalley R E 1983J. Chem. Phys. 78 1627

    Article  CAS  Google Scholar 

  8. Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985Nature (London) 318 162

    Article  CAS  Google Scholar 

  9. Sakurai H and Castleman A W Jr 1997J. Phys. Chem. A101 7695

    Google Scholar 

  10. Bililign S, Liu L, Feigerle C S and Miller J C 1997J. Phys. Chem. A101 4569

    Google Scholar 

  11. Wei S and Castleman A W Jr 1994Int. J. Mass Spectrom. Ion Process. 131 233

    Article  CAS  Google Scholar 

  12. Palmer P M and Topp M R 1998Chem. Phys. Lett. 286 113

    Article  CAS  Google Scholar 

  13. Gruenloh C J, Florio G M, Carney J R, Hagemeister F C and Zwier T S 1999J. Phys. Chem. A103 496

    Google Scholar 

  14. Jarrold M F and Creegan K M 1991Chem. Phys. Lett. 166 116

    Article  Google Scholar 

  15. Wang L-S, Cheng H-S and Fan J 1995J. Chem. Phys. 102 9480

    Article  CAS  Google Scholar 

  16. Heath J R, Liu Y, O’Brien S C, Zhang Q-L, Curl R F, Tittel F K and Smalley R E 1985J. Chem. Phys. 83 5520

    Article  CAS  Google Scholar 

  17. O’Brien S C, Liu Y, Zhang Q, Heath J R, Tittel F K, Curl R F and Smalley R E 1986J. Chem. Phys. 84 4074

    Article  CAS  Google Scholar 

  18. Barr D L 1987J. Vac. Sci. Technol. B5 184

    Google Scholar 

  19. Cox D M, Trevor D J, Whetten R L, Rohlfing E A and Kaldor A 1985Phys. Rev. B32 7290

    Google Scholar 

  20. Harfensit S A, Wang Z L, Whetten R L, Vezmar I and Alvarez M 1997Adv. Mater. 9 817

    Article  Google Scholar 

  21. Sheuring T and Weil K 1985Surf. Sci. 156 457

    Article  Google Scholar 

  22. Sattler K, Muhibach J and Recknagel E 1980Phys. Rev. Lett. 45 821

    Article  CAS  Google Scholar 

  23. Jordan R M 1999 http://rmjordan.com/ttl.html

  24. Maruyama S, Anderson L R and Smalley R E 1990Rev. Sci. Instrum. 61 3686

    Article  CAS  Google Scholar 

  25. Holden A 1965The nature of solids (New York: Columbia University Press)

    Google Scholar 

  26. Bowers M T, Su T and Anicich V G 1973J. Chem. Phys. 58 5175

    Article  CAS  Google Scholar 

  27. Rohlfing E A, Cox D M and Kaldor A 1984J. Chem. Phys. 81 3322

    Article  CAS  Google Scholar 

  28. Campbell E E B, Ulmer G, Busmann H-G and Hertel IV 1990Chem. Phys. Lett. 175 505

    Article  CAS  Google Scholar 

  29. Wegener P P and Wu B J C 1975Faraday Discuss. Chem. Soc. 77

  30. Wakisaka A, Abdoul-Carime H, Yamamoto Y and Kiyozumi Y 1998J. Chem. Soc. Faraday Trans. 94 369

    Article  CAS  Google Scholar 

  31. Dahl D A 1995SIMION 3D, Version 6.0, User’s Manual Idaho National Engineering Laboratory, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, G., Kulkarni, G.U., Yadav, R.T. et al. An indigenous cluster beam apparatus with a reflectron time-of-flight mass spectrometer. J Chem Sci 112, 83–95 (2000). https://doi.org/10.1007/BF02704310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704310

Keywords

Navigation