Bulletin of Materials Science

, Volume 28, Issue 2, pp 155–171 | Cite as

Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism

  • Dinesh Varshney
  • A. Dube
  • K. K. Choudhary
  • R. K. Singh


We consider a two- peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali- C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature,T c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reportedT c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two- peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.


Fullerenes alkali-C60 phonon on-ball-C60 phonon pressure effect electrical resistivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandrov A A 2001Eur. Phys. Lett. 56 92CrossRefGoogle Scholar
  2. Alexandrov A S and Kabanov V V 1996Phys. Rev. B54 3655Google Scholar
  3. Belosludov V R and Shpakov V P 1991Mod. Phys. Lett. 6 1209Google Scholar
  4. Bogoliubov N N, Tolmachev V V and Shirkov D D 1959A new method in the theory of superconductivity (NewYork: Con- sultants Bureau)Google Scholar
  5. Burk B, Crespi V H, Zettl A and Cohen M L 1994Phys. Rev. Lett. 72 3706CrossRefGoogle Scholar
  6. Cappelluti E, Grimaldi C, Pietronero L and Strassler S 2000Phys. Rev. Lett. 85 4771CrossRefGoogle Scholar
  7. Cappelluti E, Grimaldi C, Pietronero L, Strassler S and Umma- rino G A 2001Eur. Phys. J. B21 383Google Scholar
  8. Carbotte J P 1990Rev. Mod. Phys. 62 11012CrossRefGoogle Scholar
  9. Chaban I A 2002J. Supercond: Incorp. Nov. Mag. 15 179CrossRefGoogle Scholar
  10. Chen C C and Lieber C M 1993Science 259 655Google Scholar
  11. Chida T, Suzuki S and Nakao K 2002J. Phys. Soc. Jpn 71 525CrossRefGoogle Scholar
  12. Crespi V H and Cohen M L 1996Phys. Rev. B53 56Google Scholar
  13. Crespi V H, Hou J G, Xiang X D, Cohen M L and Zettl A 1992Phys. Rev. B46 12064Google Scholar
  14. DeGiorgi L, Wachter P, Gruner G, Huang S-M, Wiley J and Kaner R B 1992Phys. Rev. Lett. 69 2987CrossRefGoogle Scholar
  15. DeGiorgi L, Nicol E J, Klein O, Gruner G, Wachter P, Huang S M, Wiley J and Kaner R B 1994Phys. Rev. B49 7012Google Scholar
  16. Diederich J, Gangopadhyay A K and Schilling J S 1996Phys. Rev. B54 R9662Google Scholar
  17. Dresselhaus M S, Dresselhaus G and Eklund P C 1996Science of fullerenes and carbon nanotubes (New York: Academic Press)Google Scholar
  18. Erwin S C and Pickett W E 1992Phys. Rev. B46 14257Google Scholar
  19. Forro L and Mihaly L 2001Rep. Prog. Phys. 64 649CrossRefGoogle Scholar
  20. Fuhrer S, Cherrey K, Zettl A and Cohen M L 1999Phys. Rev. Lett. 83 404CrossRefGoogle Scholar
  21. Gelfand M P and Lu J P 1992Phys. Rev. B46 4367Google Scholar
  22. Goldoni A, Sangaletti, Parmigiani F, Comelli G and Paolucci G 2001Phys. Rev. Lett. 87 076401CrossRefGoogle Scholar
  23. Grimvall G 1981The electron-phonon interaction in metals (Netherlands: North Holland Publishing Company)Google Scholar
  24. Gunnarson O 1997Rev. Mod. Phys. 69 575CrossRefGoogle Scholar
  25. Hebard F 1992Physics Today 45 26Google Scholar
  26. Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T T M, Ramirez A P and Kortan A R 1991Nature 350 600CrossRefGoogle Scholar
  27. Holczer K, Klein O, Huang S-M, Kaner R B, Fu K-J, Whetten R L and Diedrich F N 1991Science 252 600Google Scholar
  28. Hou J G, Crespi V H, Xiang X D, Vareka W A, Briceno G, Zettl A and Cohen M L 1993Solid State Commun. 86 643CrossRefGoogle Scholar
  29. Hou J G, Lu Li, Crespi V H, Xiang X D, Zettl A and Cohen M L 1995Solid State Commun. 93 973CrossRefGoogle Scholar
  30. Huffman D R 1991Physics Today 44 22Google Scholar
  31. Ivanov V and Maruyama Y 1995Physica C247 147Google Scholar
  32. Kerkoud R, Auban-Senzier P, Jerome D, Lambert J M, Zahab A and Bernier P 1994Europhys. Lett. 25 379CrossRefGoogle Scholar
  33. Kiefl R Fet al 1993Phys. Rev. Lett. 70 3987CrossRefGoogle Scholar
  34. Knufper M and Fink J 1997Phys. Rev. Lett. 79 2714CrossRefGoogle Scholar
  35. Koller D, Martin M C, Mihaly L, Mihaly G, Oszlanyi G, Bau- mgartner G and Forro L 1996Phys. Rev. Lett. 77 4082CrossRefGoogle Scholar
  36. Kresin V Z 1987Phys. Lett. A122 434Google Scholar
  37. Kresin V Z 1992Phys. Rev. B46 14833Google Scholar
  38. Maraduddin A A, Montroll E W and Weiss G H 1963Theory of lattice dynamics in the harmonic approximation, Solid state physics suppl-3 (NewYork: Academic Press)Google Scholar
  39. Martins J L and Troullier N 1992Phys. Rev. B46 1766Google Scholar
  40. McMillan W L 1968Phys. Rev. 167 331CrossRefGoogle Scholar
  41. Mitch M G, Chase S J and Lannian J S 1992Phys. Rev. Lett. 68 883CrossRefGoogle Scholar
  42. Novikov D L, Gubanov V A and Freeman A J 1992Physica C191 399Google Scholar
  43. Palstra T T M, Haddon R C, Hebard A F and Zaaren J 1992Phys. Rev. Lett. 64 1054CrossRefGoogle Scholar
  44. Pintschovius L 1996Rep. Prog. Phys. 59 473CrossRefGoogle Scholar
  45. Prassides K, Tomkinson J, Christides C, Rosseinsky M J, Mur- phy D W and Haddon R C 1991Nature 354 462CrossRefGoogle Scholar
  46. Ramirez APet al 1992Phys. Rev. Lett. 68 1058CrossRefGoogle Scholar
  47. Satapthy S, Antropov V O, Anderson O K, Jepsen O, Gunnar- son O and Liechtension I 1992Phys. Rev. B46 1773Google Scholar
  48. Schluter M, Lanoo M, Needels M, Baratt G A and Tomanek D 1992Phys. Rev. Lett. 68 526CrossRefGoogle Scholar
  49. Sparn G, Thompson J D, Whetten R L, Huang S M, Kaner R B, Diederich F, Gruner G and Holczer K 1991Science 252 1829CrossRefGoogle Scholar
  50. Sparn G, Thompson J D, Whetten R L, Huang S M, Kaner R B, Diederich F, Gruner G and Holczer K 1992Phys. Rev. Lett. 68 1228CrossRefGoogle Scholar
  51. Tanigaki K, Ebbessen T W, Saito S, Mizuki J, Tsai J S, Kubo Y and Kurushima S 1991Nature 352 222CrossRefGoogle Scholar
  52. Thompson A H 1975Phys. Rev. Lett. 35 1786CrossRefGoogle Scholar
  53. Tycko R, Dabbagh G, Rosseinsky M J, Murphy D W, Ramirez A P and Fleming R M 1992Phys. Rev. Lett. 68 1912CrossRefGoogle Scholar
  54. Varma C M, Zaanen J and Raghavachari K 1991Science 254 989CrossRefGoogle Scholar
  55. Varshney Dinesh 2000J. Superconductivity 13 171Google Scholar
  56. Varshney Dinesh and Singh R K 1997Physica C 282-287 1919CrossRefGoogle Scholar
  57. Varshney Dinesh, Varshney M, Singh R K and Mishra R 1998Supercond. Sci. Technol. 11 1300CrossRefGoogle Scholar
  58. Varshney Dinesh, Choudhary K K and Singh R K 2002Super- cond. Sci. Technol. 15 1119CrossRefGoogle Scholar
  59. Xiang X D, Hou J G, Briceno G, Vareka W A, Mostovoy R, Zettl A, Crespi V H and Cohen M L 1992Science 256 1190CrossRefGoogle Scholar
  60. Xiang X D, Hou J G, Crespi V H, Zettl A and Cohen M L 1993Nature 361 54CrossRefGoogle Scholar
  61. Zhang M L and Guo H Y 1994Physica C227 15Google Scholar
  62. Zhang F C, Ogata M and Rice T M 1991aPhys. Rev. Lett. 67 3452CrossRefGoogle Scholar
  63. Zhang Z, Chen C C and Lieber C M 1991bScience 254 1619CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Dinesh Varshney
    • 1
  • A. Dube
    • 1
  • K. K. Choudhary
    • 1
    • 2
  • R. K. Singh
    • 1
    • 2
  1. 1.School of Physics, Vigyan BhawanDevi Ahilya UniversityIndoreIndia
  2. 2.Department of PhysicsSVITSIndoreIndia

Personalised recommendations