Advertisement

Pramana

, Volume 64, Issue 6, pp 971–980 | Cite as

The depletion potential in one, two and three dimensions

  • R. Roth
  • P. -M. König
Article

Abstract

We study the behavior of the depletion potential in binary mixtures of hard particles in one, two, and three dimensions within the framework of a general theory for depletion potential using density functional theory. By doing so we extend earlier studies of the depletion potential in three dimensions to the cases ofd = 1 and 2 about which little is known, despite their importance for experiments. We also verify scaling relations between depletion potentials in sphere-sphere and wall-sphere geometries ind = 3 and in disk-disk and wall-disk geometries ind = 2, which originate from geometrical considerations.

Keywords

Colloids depletion potential density functional theory 

PACS Nos

82.70.Dd 61.20.Gy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S Asakura and F Oosawa,J. Chem. Phys. 22, 1255 (1954)ADSGoogle Scholar
  2. [2]
    R Roth, R Evans and S Dietrich,Phys. Rev. E62, 5360 (2000)ADSGoogle Scholar
  3. [3]
    C Bechinger, D Rudhardt, P Leiderer, R Roth and S Dietrich,Phys. Rev. Lett. 83, 3960 (1999)CrossRefADSGoogle Scholar
  4. [4]
    L Helden, R Roth, G H Koenderink, P Leiderer and C Bechinger,Phys. Rev. Lett. 90, 048301 (2003)CrossRefADSGoogle Scholar
  5. [5]
    R Roth,J. Phys.: Condens. Matter 15, S277 (2003)CrossRefADSGoogle Scholar
  6. [6]
    M Brunner, C Bechinger, W Strepp, V Lobaskin and H H von Grünberg,Europhys. Lett. 58, 926 (2002)CrossRefADSGoogle Scholar
  7. [7]
    C Lutz, M Kollmann and C Bechinger,Phys. Rev. Lett. 93, 026001 (2004).CrossRefADSGoogle Scholar
  8. [8]
    R Castañeda-Priego, A Rodriguez-Lopez and J M Mendez-Alcaraz,J. Phys.: Condens. Matter 15, S3393 (2003)CrossRefADSGoogle Scholar
  9. [9]
    B Widom,J. Phys. Chem. 86, 869 (1982)CrossRefGoogle Scholar
  10. [10]
    J R Henderson,Mol. Phys. 50, 741 (1983)CrossRefADSGoogle Scholar
  11. [11]
    J K Percus,J. Stat. Phys. 15, 505 (1976)CrossRefMathSciNetGoogle Scholar
  12. [12]
    T K Vanderlick, H T Davis and J K Percus,J. Chem. Phys. 91, 7136 (1989)CrossRefADSGoogle Scholar
  13. [13]
    Y Rosenfeld,Phys. Rev. Lett. 63, 980 (1989)CrossRefADSGoogle Scholar
  14. [14]
    Y Rosenfeld,Phys. Rev. A42, 5978 (1990)ADSGoogle Scholar
  15. [15]
    R Roth, R Evans, A Lang and G Kahl,J.Phys.: Condens. Matter 14, 12063 (2002)CrossRefADSGoogle Scholar
  16. [16]
    Y-X Yu and J Wu,J. Chem. Phys. 117, 10156 (2002)CrossRefADSGoogle Scholar
  17. [17]
    G A Mansoori, N F Carnahan, K E Starling and T W Leland Jr.,J. Chem. Phys. 54, 1523 (1971)CrossRefGoogle Scholar
  18. [18]
    R Roth and R Evans,Europhys. Lett. 53, 271 (2001)CrossRefADSGoogle Scholar
  19. [19]
    R Roth and S Dietrich,Phys. Rev. E62, 6926 (2000)ADSGoogle Scholar
  20. [20]
    S-C Kim, Z T Nemeth, M Heni and H Löwen,Mol. Phys. 99, 1875 (2001)CrossRefADSGoogle Scholar
  21. [21]
    P Bryk, R Roth, K R Mecke and S Dietrich,Phys. Rev. E68, 031602 (2003)ADSGoogle Scholar
  22. [23]
    R Roth, B Götzelmann and S Dietrich,Phys. Rev. Lett. 83, 448 (1999)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • R. Roth
    • 1
    • 2
  • P. -M. König
    • 1
    • 2
  1. 1.Max-Planck-Institut für MetallforschungStuttgartGermany
  2. 2.Institut für Theoretische und Angewandte PhysikUniversität StuttgartStuttgartGermany

Personalised recommendations