Advertisement

Pramana

, Volume 64, Issue 6, pp 871–880 | Cite as

Nonequilibrium relaxation method — an alternative simulation strategy

  • Nobuyasu Ito
Article

Abstract

One well-established simulation strategy to study the thermal phases and transitions of a given microscopic model system is the so-called equilibrium method, in which one first realizes the equilibrium ensemble of a finite system and then extrapolates the results to infinite system. This equilibrium method traces over the standard theory of the thermal statistical mechanics, and over the idea of the thermodynamic limit. Recently, an alternative simulation strategy has been developed, which analyzes the nonequilibrium relaxation (NER) process. It is called theNER method. NER method has some advantages over the equilibrium method. The NER method provides a simpler analyzing procedure. This implies less systematic error which is inevitable in the simulation and provides efficient resource usage. The NER method easily treats not only the thermodynamic limit but also other limits, for example, non-Gibbsian nonequilibrium steady states. So the NER method is also relevant for new fields of the statistical physics. Application of the NER method have been expanding to various problems: from basic first- and second-order transitions to advanced and exotic phases like chiral, KT spin-glass and quantum phases. These studies have provided, not only better estimations of transition point and exponents, but also qualitative developments. For example, the universality class of a random system, the nature of the two-dimensional melting and the scaling behavior of spin-glass aging phenomena have been clarified.

Keywords

Nonequlibrium relaxation phase transition exponents, Kosterlitz-Thouless transition chiral transition two-dimensional melting first-order transition spin-glass system random system computer simulation computer emulation 

PACS Nos

05.70.Fh 05.70.Jk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M Suzuki,Phys. Lett. A58, 435 (1976)ADSGoogle Scholar
  2. [2]
    M Suzuki,Prog. Theor. Phys. 58, 1142 (1977)CrossRefADSGoogle Scholar
  3. [3]
    N Jan, L L Moseley and D Stauffer,J. Stat. Phys. 33, 1 (1983)CrossRefGoogle Scholar
  4. [4]
    C Kalle,J. Phys. A17, L801 (1984)ADSGoogle Scholar
  5. [5]
    J Williams,J. Phys. A18, 1781 (1985)ADSGoogle Scholar
  6. [6]
    M Kikuchi and Y Okabe,Phys. Rev. Lett. 55, 1220 (1985)CrossRefADSGoogle Scholar
  7. [7]
    M Kikuchi and Y Okabe,J. Phys. Soc. Jpn. 55, 1359 (1986)CrossRefADSGoogle Scholar
  8. [8]
    N Ito and M Suzuki,Prog. Theor. Phys. 77, 1391 (1987)CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    D Stauffer,Physica A186, 197 (1992)ADSGoogle Scholar
  10. [10]
    G A Kohring and D Stauffer,Int. J. Mod. Phys. C3, 1165 (1992)ADSGoogle Scholar
  11. [11]
    J Kertész and D Stauffer,Int. J. Mod. Phys. C3, 1275 (1992)ADSGoogle Scholar
  12. [12]
    N Ito,Physica A192, 604 (1993)ADSGoogle Scholar
  13. [13]
    N Ito,Physica A196, 569 (1993)Google Scholar
  14. [14]
    C Münkel, D W Heermann, J Adler, M Gofman and D Stauffer,Physica A193, 540 (1993)ADSGoogle Scholar
  15. [15]
    F-G Wang and C-K Hu,Phys. Rev. E56, 2310 (1997)ADSGoogle Scholar
  16. [16]
    D A Huse,Phys. Rev. B40, 304 (1989)ADSGoogle Scholar
  17. [17]
    K Humayan and A J Bray,J. Phys. A24, 1915 (1991)ADSGoogle Scholar
  18. [18]
    Z B Li, U Ritschel and B Zheng,J. Phys. A27, L837 (1994)ADSGoogle Scholar
  19. [19]
    Z B Li, L Schülke and B Zheng,Phys. Rev. Lett. 74, 3396 (1995)CrossRefADSGoogle Scholar
  20. [20]
    L Schülke and B Zheng,Phys. Lett. A204, 295 (1995)ADSGoogle Scholar
  21. [21]
    A Jaster, J Mainville, L Schülke and B Zheng,J. Phys. A32, 1395 (1999)ADSGoogle Scholar
  22. [22]
    B Zheng, M Schultz and S Trimper,Phys. Rev. Lett. 82, 1891 (1999) phi4, deterministic dynamicsCrossRefADSGoogle Scholar
  23. [23]
    K Okano, L Schülke, K Yamagishi and B Zheng,J. Phys. A30, 4527 (1997)ADSGoogle Scholar
  24. [24]
    H J Luo, M Schulz, L Schülke, S Trimper and B Zheng,Phys. Lett. A250, 383 (1998)ADSGoogle Scholar
  25. [25]
    H J Luo, L Schülke and B Zheng,Phys. Rev. Lett. 81, 180 (1998)CrossRefADSGoogle Scholar
  26. [26]
    K Okano, L Schülke, K Yamagishi and B Zheng,J. Phys. A32, 1395 (1999)Google Scholar
  27. [27]
    H J Luo, L Schülke and B Zheng,Phys. Rev. E64, 036123 (2001)ADSGoogle Scholar
  28. [28]
    [27a] More precisely, stretched exponential decay may also be expectedGoogle Scholar
  29. [29]
    N Ito, T Matsuhisa and H Kitatani,J. Phys. Soc. Jpn. 67, 1188 (1998)CrossRefADSGoogle Scholar
  30. [30]
    N Ito and Y Ozeki,Int. J. Mod. Phys. C10, 1495 (1999)ADSGoogle Scholar
  31. [31]
    N Ito, K Ogawa, K Hukushima and Y Ozeki,Prog. Theor. Phys. Suppl. 138, 555 (2000)ADSGoogle Scholar
  32. [32]
    http://www.es.jamstec.go.jp/esc/eng/index.htmlGoogle Scholar
  33. [33]
    N Ito and Y Kanada,Supercomputer 5, 31 (1988)Google Scholar
  34. [34]
    N Ito and Y Kanada,Supercomputer 7, 29 (1990)Google Scholar
  35. [35]
    N Ito and Y Kanada, inProceedings of Supercomputing ‘90 (IEEE Computer Society Press, Los Alamitos, 1990) p. 753Google Scholar
  36. [36]
    N Ito, M Kikuchi and Y Okabe,Int. J. Mod. Phys. C4, 569 (1993)ADSMathSciNetGoogle Scholar
  37. [37]
    N Ito, K Hukushima, K Ogawa and Y Ozeki,J. Phys. Soc. Jpn. 69, 1931 (2000) Estimation of the transition pointKc shown in this and in [37] turned out to be biased due to the lack of statistics. See figure 1 and ref. [38] for the more reliable estimationsCrossRefADSGoogle Scholar
  38. [38]
    N Ito and Y Ozeki,Computer simulation studies in condensed matter physics XIII edited by D P Landau, S P Lewis and H-B Schüttler (Springer-Verlag, Heidelberg, 2001) p. 175Google Scholar
  39. [39]
    N Ito, S Fukushima, H Watanabe and Y Ozeki,Computer simulation studies in condensed matter physics XIV edited by D P Landau, S P Lewis and H-B Schüttler (Springer-Verlag, Heidelberg, 2002) p. 27Google Scholar
  40. [40]
    Y Ozeki and N Ito,J. Phys. A31, 5451 (1998)ADSGoogle Scholar
  41. [41]
    N Ito, Y Ozeki and H Kitatani,J. Phys. Soc. Jpn. 68, 4547 (1999)Google Scholar
  42. [42]
    Y Ozeki and N Ito,Suppl. J. Phys. Soc. Jpn. 69, 193 (2000)Google Scholar
  43. [43]
    Y Ozeki, N Ito and K Ogawa,J. Phys. Soc. Jpn. 70, 3471 (2001)CrossRefADSGoogle Scholar
  44. [44]
    N Ito and Y Ozeki,Computer simulation studies in condensed matter physics XV edited by D P Landau, S P Lewis and H B Schüttler (Springer-Verlag, Heidelberg, 2002)Google Scholar
  45. [45]
    N Ito and Y Ozeki,Physica A321, 262 (2003)ADSMathSciNetGoogle Scholar
  46. [46]
    N Ito,Computer simulation studies in condensed matter physics XI, edited by D P Landau and H-B Schüttler (Springer-Verlag, Heidelberg, 1999) p. 130Google Scholar
  47. [47]
    Y Ozeki, K Kasono, N Ito and S Miyashita,Physica A321, 271 (2003)ADSGoogle Scholar
  48. [48]
    Y Ozeki and N Ito,Computer simulation studies in condensed matter physics XV edited by D P Landau, S P Lewis and H B Schüttler (Springer-Verlag, Heidelberg, 2002) p. 42Google Scholar
  49. [49]
    Y Ozeki, K Ogawa and N Ito,Phys. Rev. E67, 026702 (2003)ADSGoogle Scholar
  50. [50]
    Y Ozeki and N Ito,Phys. Rev. B68, 054414 (2003)ADSGoogle Scholar
  51. [51]
    Y Ozeki and N Ito,Computer simulation studies in condensed matter physics XVI edited by D P Landau, S P Lewis and H B Schüttler (Springer-Verlag, Heidelberg, 2004) p. 106Google Scholar
  52. [52]
    H Watanabe, S Yukawa, Y Ozeki and N Ito,Phys. Rev. E66, 041110 (2002)ADSGoogle Scholar
  53. [53]
    H Watanabe, S Yukawa, Y Ozeki and N Ito,Computer simulation studies in condensed matter physics XVI edited by D P Landau, S P Lewis and H B Schüttler (Springer-Verlag, Heidelberg, 2004) p. 101Google Scholar
  54. [54]
    H Watanabe, S Yukawa, Y Ozeki and N Ito,Phys. Rev. E69, 045103 (2004)ADSGoogle Scholar
  55. [55]
    H Watanabe, S Yukawa and N Ito,Phys. Rev. E71, 016702 (2005)ADSGoogle Scholar
  56. [56]
    Y Ozeki and N Ito,Phys. Rev. B64, 024416 (2001)ADSGoogle Scholar
  57. [57]
    T Nakamura and S-I Endoh,J. Phys. Soc. Jpn. 71, 2113 (2002)CrossRefADSGoogle Scholar
  58. [58]
    T Nakamura, S-I Endoh and T Yamamoto,Computer simulation studies in condensed matter physics XVI edited by D P Landau, S P Lewis and H B Schüttler (Springer-Verlag, Heidelberg, 2004) p. 95Google Scholar
  59. [58]
    Y Ozeki and N Ito,J. Phys. A36, 5175 (2003)ADSMathSciNetGoogle Scholar
  60. [60]
    Y Nonomura,J. Phys. Soc. Jpn. 67, 5 (1998)CrossRefADSGoogle Scholar
  61. [61]
    Y Nonomura,J. Phys. A31, 7939 (1998)ADSGoogle Scholar
  62. [62]
    T Nakamura,Prog. Theor. Phys. Suppl. 145, 353 (2002)CrossRefADSGoogle Scholar
  63. [63]
    T Nakamura,J. Phys. Soc. Jpn. 72, 789 (2003)CrossRefADSGoogle Scholar
  64. [64]
    T Nakamura,Phys. Rev. B71, 144401 (2005)ADSGoogle Scholar
  65. [65]
    T Shirahata and T Nakamura,Phys. Rev. B65, 024402 (2002)ADSGoogle Scholar
  66. [66]
    T Shirahata and T Nakamura,J. Phys. Soc. Jpn. 73, 254 (2004)CrossRefADSGoogle Scholar
  67. [67]
    [65a] For ordered phase, some conditions on the initial states and the symmetry breaking fields are necessary for this commutability, as it is suggested in table 1Google Scholar
  68. [68]
    V Latora, A Rapisarda and C Tsallis,Phys. Rev. E64, 056134 (2001)ADSGoogle Scholar
  69. [69]
    N Ito,Monte Carlo study of the Ising model (Doctor Thesis, The University of Tokyo, 1990).Google Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Nobuyasu Ito
    • 1
  1. 1.Department of Applied Physics, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations