Advertisement

Pramana

, Volume 65, Issue 5, pp 777–786 | Cite as

Optically-driven red blood cell rotor in linearly polarized laser tweezers

  • Manas Khan
  • Samarendra K. Mohanty
  • A. K. Sood
Article

Abstract

We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and become twisted in hypertonic phosphate buffer saline and when trapped, experience an unbalanced radiation pressure force. The torque generated from the unbalanced force causes the trapped RBC to rotate. Addition of Ca++ ions in the solution, keeping the osmolarity same, makes the cell membranes stiffer and the cells deform less. Thus the speed of rotation of the red blood cells can be controlled, as less deformation and in turn less asymmetry in shape produces less torque under the radiation pressure resulting in slower rotation at the same laser power

Keywords

Rotation of red blood cell optical tweezers dual optical trap 

PACS Nos

87.80.Cc 87.83.+a 87.80.Fe 89.20.-a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A Ashkin, J M Dziedzic, J E Bjorkholm and S Chu,Opt. Lett. 11, 288 (1986)ADSGoogle Scholar
  2. [2]
    K Schutze, G Posl and G Lahr,Cell. Mol. Biol. 44, 735 (1998)Google Scholar
  3. [3]
    M Zahn and S Seeger,Cell. Mol. Biol. 44, 747 (1998)Google Scholar
  4. [4]
    A Clement-Sengewald, K Schutze, A Ashkin, G A Palma, G Kerlen and G Brem,J. Assist. Reprod. Genet. 13, 259 (1996)CrossRefGoogle Scholar
  5. [5]
    M Zahn, J Renken and S Seeger,FEBS Lett. 443, 337 (1999)CrossRefGoogle Scholar
  6. [6]
    C Bustamante, Z Bryant and S B Smith,Nature 421, 423 (2003)CrossRefADSGoogle Scholar
  7. [7]
    J A Dharmadhikari, S Roy, A K Dharmadhikari, S Sharma and D Mathur,Opt. Exp. 12, 1179 (2004)CrossRefADSGoogle Scholar
  8. [8]
    S K Mohanty, A Uppal and P K Gupta,Biotechnol. Lett. 26, 971 (2004)CrossRefGoogle Scholar
  9. [9]
    A Ghosh, S Sinha, J A Dharmadhikari, S Roy, A K Dharmadhikari, J Samuel, S Sharma and D Mathur, arXiv:physics/0501099 v1, 19 Jan. 2005Google Scholar
  10. [10]
    S K Mohanty, K S Mohanty and P K Gupta,Opt. Exp. 13, 4745 (2005)CrossRefADSGoogle Scholar
  11. [11]
    J A Dharmadhikari, S Roy, A K Dharmadhikari, S Sharma and D Mathur,Appl. Phys. Lett. 85, 6048 (2004)CrossRefADSGoogle Scholar
  12. [12]
    M Khan, A K Sood, F L Deepak and C N R Rao,Nanomotors using asymmetric nanorods in optical trap (submitted)Google Scholar
  13. [13]
    P Galajda and P Ormos,Opt. Exp. 11, 446 (2003)ADSCrossRefGoogle Scholar
  14. [14]
    M Capitanio, G Romano, R Ballerini, M Giuntini and F S Pavone,Rev. Sci. Instrum. 73, 1687 (2002)CrossRefADSGoogle Scholar
  15. [15]
    E Evans and Y C Fung,Microvasc. Res. 4, 335 (1972)CrossRefGoogle Scholar
  16. [16]
    M Mela and S Eskelinen,Acta Physiol. Scand. 122, 515 (1984)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Manas Khan
    • 1
  • Samarendra K. Mohanty
    • 1
  • A. K. Sood
    • 1
    • 2
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Unit on Nanoscience and Technology-DSTIndian Institute of ScienceBangaloreIndia

Personalised recommendations