Skip to main content
Log in

Living in a physical world VII. Gravity and life on the ground

  • Series
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alexander R M 1976 Estimates of speeds of dinosaurs;Nature (London) 261 129–130

    Article  Google Scholar 

  • Alexander R M 1984 Stride length and speed for adults, children, and fossil hominids;Am. J. Phys. Anthropol. 63 23–27

    Article  PubMed  CAS  Google Scholar 

  • Alexander R M 1988 Why mammals gallop;Am. Zool. 28 237–245

    Google Scholar 

  • Alexander R M and Jayes A S 1978 Optimum walking techniques for idealized animals;J. Zool. (London) 186 61–81

    Google Scholar 

  • Alexander R M and Jayes A S 1983 A dynamic similarity hypothesis for the gaits of quadrupedal mammals;J. Zool. (London) 201 135–152

    Google Scholar 

  • Alexander R M, Jayes A S and Ker R F 1980 Estimates of energy cost for quadrupedal running gaits;J. Zool. (London) 190 155–192

    Google Scholar 

  • Baudinette R V 1978 Scaling of heart rate during locomotion of mammals;J. Comp. Physiol. B127 337–342

    Google Scholar 

  • Biewener A A 1990 Biomechanics of mammalian terrestrial locomotion;Science 250 1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Biewener A A 2003Animal locomotion (Oxford: Oxford University Press)

    Google Scholar 

  • Calder W A 1984Size, function, and life history (Cambridge, MA: Harvard University Press)

    Google Scholar 

  • Cannell MGR and J Morgan 1987 Young’s modulus of sections of living branches and tree trunks;Tree Physiol. 3 355–364

    PubMed  Google Scholar 

  • Caro C G, Pedley T J, Schroter R C and Seed W A 1978The mechanics of the circulation (Oxford: Oxford University Press)

    Google Scholar 

  • Carrier D R, Walter R M and Lee D V 2001 Influence of rotational inertia on turning performance of theropod dinosaurs: clues from humans with increased rotational inertia;J. Exp. Biol. 204 3917–3926

    PubMed  CAS  Google Scholar 

  • Cavagna G A, Willems P A and Heglund N C 2000 The role of gravity in human walking: pendular energy exchange, external work, and optimal speed;J. Physiol. 528 657–668

    Article  PubMed  CAS  Google Scholar 

  • Coleman M J and Ruina A 1998 An uncontrolled walking toy that cannot stand still;Phys. Rev. Lett. 80 3658–3661

    Article  CAS  Google Scholar 

  • Dawson T H 2005 Modeling of vascular networks;J. Exp. Biol. 208 1687–1694

    Article  PubMed  Google Scholar 

  • Ellmore G S and Ewers F W 1986 Fluid flow in the outermost xylem increment of a ring-porous tree,Ulmus americana;Am. J. Bot. 73 1771–1774

    Article  Google Scholar 

  • Ennos A R 1993 The function and formation of buttresses;TREE 8 350–351

    Google Scholar 

  • Ennos A R 1999 The aerodynamics and hydrodynamics of plants;J. Exp. Biol. 202 3281–3284

    PubMed  CAS  Google Scholar 

  • Gartner B L 1995 Patterns of xylem variation within a tree and their hydraulic and mechanical consequences; inPlant stems: physiology and functional morphology (ed.) B L Gartner (San Diego, CA: Academic Press) pp 125–149

    Google Scholar 

  • Givnish T J 1995 Plant stems: biomechanical adaptations for energy capture and influence on species distributions; inPlant stems: physiology and functional morphology (ed.) B L Gartner (San Diego, CA: Academic Press) pp 3–49

    Google Scholar 

  • Gould S J 1981 Kingdoms without wheels;Nat. Hist. 90 42–48

    Google Scholar 

  • Greenhill A G 1881 Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow;Cambridge Philos. Soc. 4 65–73

    Google Scholar 

  • Griffin T M, Tolani N A and Kram R 1999 Walking in simulated reduced gravity: mechanical energy fluctuations and exchange;J. Appl. Physiol. 86 383–390

    PubMed  CAS  Google Scholar 

  • Griffin T M and Kram R 2000 Penguin waddling is not wasteful;Nature (London) 408 929

    Article  CAS  Google Scholar 

  • Grubb B 1983 Allometric relations of cardiovascular function in birds;Am. J. Physiol. 245 H567-H572

    PubMed  CAS  Google Scholar 

  • Gunga H-C, Kirsch K A, Baartz F, Röcker L, Heinrich W-D, Lisowski W, Wiedemann A and Albertz J 1995 New Data on the dimensions ofBrachiosaurus brancai and their physiological implications;Naturwissenschaften 82 190–192

    CAS  Google Scholar 

  • Heglund N C, Taylor C R and McMahon T A 1974 Scaling stride frequency and gait to animal size: mice to horses;Science 186 1112–1113

    Article  PubMed  CAS  Google Scholar 

  • Heglund N C and Taylor C R 1988 Speed, stride frequency and energy cost per stride: how do they change with body size and gait?;J. Exp. Biol. 138 301–318

    PubMed  CAS  Google Scholar 

  • Holbrook N M and Zwieniecki M A 1999 Embolism repair and xylem tension: do we need a miracle?;Plant Physiol. 120 7–10

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson J R and Garcia M 2002Tyrannosaurus was not a fast runner;Nature (London) 415 1018–1021

    Article  CAS  Google Scholar 

  • Johnson P S and Shifley S R 2002The ecology and silviculture of oaks (New York: CABI Publishing)

    Google Scholar 

  • Koch G W, Sillett S C, Jennings G M and Davis S D 2004 The limit to tree height;Nature (London) 428 851–854

    Article  CAS  Google Scholar 

  • LaBarbera M 1983 Why the wheels won’t go;Am. Nat. 121 395–408

    Article  Google Scholar 

  • Lancashire J R and Ennos A R 2002 Modelling the hydrodynamic resistance of bordered pits;J. Exp. Bot. 53 1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Maherali H, Moura C F, Caldeira M C, Willson C J and Jackson R B 2006 Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees;Plant, Cell Environ. 29 571–583

    Article  Google Scholar 

  • McMahon T A 1973 Size and shape in biology;Science 179 1201–1202

    Article  PubMed  CAS  Google Scholar 

  • Milburn J A 1979Water flow in plants (London: Longmans)

    Google Scholar 

  • Minetti A E 1995 Optimum gradient of mountain paths;J. Appl. Physiol. 79 1698–1703

    PubMed  CAS  Google Scholar 

  • Minetti A E 2001 Walking on other planets;Nature (London) 409 467–468

    Article  CAS  Google Scholar 

  • Niklas K J 1992Plant biomechanics: an engineering approach to plant form and function (Chicago: University of Chicago Press)

    Google Scholar 

  • Niklas K J 1997The evolutionary biology of plants (Chicago: University of Chicago Press)

    Google Scholar 

  • Niklas K J and Spatz H-C 2004 Growth and hydraulics (not mechanical) constraints govern the scaling of tree height and mass;Proc. Natl. Acad. Sci. USA 101 15661–15663

    Article  PubMed  CAS  Google Scholar 

  • Nobel P 1999Physicochemical and environmental plant physiology, 2nd edition (New York: W H Freeman)

    Google Scholar 

  • Nowak R M 1991Walker’s mammals of the world, 5th edition (Baltimore: Johns Hopkins University Press)

    Google Scholar 

  • Pedley T J, Brook B S and Seymour R S 1996 Blood pressure and flow rate in the giraffe jugular vein;Philos. Trans. R. Soc. London B351 855–866

    Google Scholar 

  • Schlesinger W H, Gray J T, Gill D S and Mahall B E 1982Ceanothus megacarpus chaparral: a synthesis of ecosystem processes during development and animal growth;Bot. Rev. 48 71–117

    Article  Google Scholar 

  • Schmidt-Nielsen K 1997Animal physiology: adaptation and environment, 5th edition (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  • Scholander P F, Hammel H T, Bradstreet E D and Hemmingsen E A 1965 Sap pressure in vascular plants;Science 148 339–346

    Article  PubMed  Google Scholar 

  • Seymour R S and Blaylock A J 2000 The principle of Laplace and scaling of ventricular wall stress and blood pressure in mammals and birds;Physiol. Biochem. Zool. 73 389–405

    Article  PubMed  CAS  Google Scholar 

  • Seymour R S and Arndt J O 2004 Independent effects of heart-head distance and caudal pooling on pressure regulation in aquatic and terrestrial snakes;J. Exp. Biol. 207 1305–1311

    Article  PubMed  Google Scholar 

  • Smith A P 1972 Buttressing of tropical trees: a descriptive model and new hypotheses;Am. Nat. 106 32–46

    Article  Google Scholar 

  • Vogel S 1989 Drag and reconfiguration of broad leaves in high winds;J. Exp. Bot. 40 941–948

    Article  Google Scholar 

  • Vogel S 1996 Blowing in the wind: storm-resisting features of the design of trees;J. Arboriculture 22 92–98

    Google Scholar 

  • Vogel S 2003Comparative biomechanics (Princeton NJ: Princeton University Press)

    Google Scholar 

  • Vogel S 2006 Living in a physical world. VI. Gravity and life in the air;J. Biosci. 31 13–25

    Article  PubMed  Google Scholar 

  • Weisskopf V F 1975 Of atoms, mountains, and stars: a study in qualitative physics;Science 187 605–612

    Article  PubMed  Google Scholar 

  • Zimmerman M H 1983Xylem structure and the ascent of sap (Berlin: Springer-Verlag)

    Google Scholar 

  • Zweifach B W 1974 Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery;Circ. Res. 34 843–857

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, S. Living in a physical world VII. Gravity and life on the ground. J Biosci 31, 201–214 (2006). https://doi.org/10.1007/BF02703912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703912

Keywords

Navigation