Advertisement

Journal of Biosciences

, Volume 15, Issue 3, pp 179–185 | Cite as

Inhibition of anion transport in the red blood cell membrane by anionic and non-anionic arginine-specific reagents

  • Laila Zaki
Article

Abstract

Arginine specific reagents are found to be powerful inhibitors of anion exchange in the red blood cell membrane. Some of these inhibitors such as cyclohexandione, phenylglyoxal and 2, 3-butandione are found to produce their inhibition by interacting covalently with band 3. In contrast to the action of these compounds, the inhibition caused by the phenylglyoxal derivative 4-hydroxy-3-nitrophenyl-glyoxal has been found to be completly reversible. In extending the studies on the mode of action of these compounds on sulfate exchange and to get some more information about their binding site, the degree of inhibition caused by different phenylglyoxal derivatives which have a similar core but differ in their substituent groups have been compared. The interaction between the binding sites of these compounds and other anion transport inhibitors have also been studied.

Keywords

Red blood cell anion transporter arginine-specific reagents 

Abbreviations used

SITS

4-Acetamido-4’-isothiocyano-2,2’-disulfonicstilbene

DNFB

2,4-dinitrofluoro-benzene

H2DIDS

4,4’-diisothiocyanodihydrostilbene-2,2’-disulfonate

HNPG

4-hydroxy-3-nitro-phenylglyoxal

PG

phenylglyoxal

OH-PG

p-hydroxyphenylglyoxal

N3-PG

p-azidophenylglyoxal

NO2-PG

p-nitrophenylglyoxal

COOH-PG

p-carboxyphenylglyoxal

CH3-PG

p-methylphenylglyoxal

DNDS

4,4’-dinitrostilbene-2,2’-disulfonate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brazilay, M., Ship, S. and Cabantchik, Z. I. (1979)Membr. Biochem.,2, 227.Google Scholar
  2. Cabantchik, Z. and Rothstein, A. (1974)J. Membr. Biol.,15, 207.PubMedCrossRefGoogle Scholar
  3. Catherine, M. V. and Hsv, R. Y. (1983)Arch. Biochem. Biophys.,225, 296.CrossRefGoogle Scholar
  4. Julien, T., Betakis, E. and Zaki, L. (1990)Biochim. Biophys. Acta,1626, 43.Google Scholar
  5. Julien, T. and Zaki, L. (1987)Biochim. Biophys. Acta,900, 169.PubMedCrossRefGoogle Scholar
  6. Julien, T. and Zaki, L. (1988)J. Membr. Biol.,102, 217.PubMedCrossRefGoogle Scholar
  7. Motais, R. and Cousin, T. L. (1976)Am. J. Physiol.,231, 1485.PubMedGoogle Scholar
  8. Passow, H., Fasold, H., Gartner, E., Legrum, B., Ruffing, W. and Zaki, L. (1980)Ann. N. Y.Acad. Sci.,341, 361.PubMedCrossRefGoogle Scholar
  9. Schnell, K. F. (1972)Biochim. Biophys. Acta,282, 265.PubMedCrossRefGoogle Scholar
  10. Singer, J. and Morrison(1980)Biochim. Biophys. Acta,598, 40.PubMedCrossRefGoogle Scholar
  11. Zaki, L. (1981)Biochem. Biophys. Res. Commun.,99, 234.CrossRefGoogle Scholar
  12. Zaki, L. (1983)Biochem. Biophys. Res. Commun.,110, 616.PubMedCrossRefGoogle Scholar
  13. Zaki, L. (1984)FEBS Lett.,169, 234PubMedCrossRefGoogle Scholar
  14. Zaki, L., Fasold, H., Schumann, B. and Passow, H. (1975)Cell. Physiol.,86, 471.CrossRefGoogle Scholar
  15. Zaki, L. and Julien, T. (1985)Biochim. Biophys. Acta,818, 325.PubMedCrossRefGoogle Scholar
  16. Zaki, L. and Julien, T. (1986)8th School on Biophysics of Membrane Transport Proceedings, Agricultural University of Wraclaw, Poland.Google Scholar

Copyright information

© Indian Academy of Sciences 1990

Authors and Affiliations

  • Laila Zaki
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt am Main 71FRG

Personalised recommendations