Journal of Chemical Sciences

, Volume 114, Issue 4, pp 391–401 | Cite as

Copper complexes as chemical nucleases

  • Akhil R Chakravarty
  • Pattubala A. N. Anreddy
  • Bidyut K. Santra
  • Anitha M. Thomas


Redox active mononuclear and binuclear copper(II) complexes have been prepared and structurally characterized. The complexes have planar N-donor heterocyclic bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) ligands that are suitable for intercalation to B-DNA. Complexes studied for nuclease activity have the formulations [Cu(dpq)2(H2O)] (ClO4)2.H2O (1), [CuL(H2O)2(μ-ox)](ClO4)2 (L = bpy,2; phen,3; dpq,4; and dppz,5) and [Cu(L)(salgly)] (L = bpy,6; phen,7; dpq,8; and dppz,9), where salgly is a tridentate Schiff base obtained from the condensation of glycine and salicylaldehyde. The dpq complexes are efficient DNA binding and cleavage active species. The dppz complexes show good binding ability but poor nuclease activity. The cleavage activity of thebis-dpq complex is significantly higher than thebis-phen complex of copper(II). The nuclease activity is found to be dependent on the intercalating nature of the complex and on the redox potential of the copper(II)/copper(I) couple. The ancillary ligand plays a significant role in binding and cleavage activity.


Copper(II) complexes nuclease activity catalytic properties DNA binding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sigman D S, Bruice T W, Mazumder A and Sutton C L 1993Acc. Chem. Res. 26 98CrossRefGoogle Scholar
  2. 2.
    Sigman D S, Mazumder A and Perrin D M 1993Chem. Rev. 93 2295CrossRefGoogle Scholar
  3. 3.
    Pogozelski W K and Tullius T D 1998Chem. Rev. 98 1089CrossRefGoogle Scholar
  4. 4.
    Chin J 1991Acc. Chem. Res. 24 145CrossRefGoogle Scholar
  5. 5.
    Burrows C J and Muller J G 1998Chem. Rev. 98 1109CrossRefGoogle Scholar
  6. 6.
    Meunier B 1992Chem. Rev. 92 1411CrossRefGoogle Scholar
  7. 7.
    Patriviel G, Bernadou J and Meunier B 1998Adv. Inorg. Chem. 45 251Google Scholar
  8. 8.
    Thorp H H 1995Adv. Inorg. Chem. 43 127CrossRefGoogle Scholar
  9. 9.
    Pyle A M and Barton J K 1990Prog. Inorg. Chem. 38 413CrossRefGoogle Scholar
  10. 10.
    Sigel A and Sigel H 1996Probing nucleic acids by metal ion complexes of small molecules (New York: Dekker)Google Scholar
  11. 11.
    Barton J K 1986Science 233 727CrossRefGoogle Scholar
  12. 12.
    Francois J-C, Saison-Behmoaras T and Helene C 1988Nucleic Acids Res. 16 11431CrossRefGoogle Scholar
  13. 13.
    Francois J-C, Saison-Behmoaras T, Chassignol M, Thuong N T, Sun J-SandHeleneC 1988Biochemistry 29 570Google Scholar
  14. 14.
    Guo Q, Lu M, Seeman N C and Kallenbach N R 1990Biochemistry 29 570CrossRefGoogle Scholar
  15. 15.
    Veal J M and Rill R L 1988Biochemistry 27 1822CrossRefGoogle Scholar
  16. 16.
    Oikawa S and Kawanishi S 1996Biochemistry 35 4584CrossRefGoogle Scholar
  17. 17.(a)
    Yamamoto K and Kawanishi S 1989J. Biol. Chem. 264 15435;Google Scholar
  18. 17.(b)
    Yamamoto K and Kawanishi S 1991 J. Biol. Chem. 266 1509Google Scholar
  19. 18.
    Kubiak M, Duda A M, Garadu M L and Kozlowski H 1996J Chem. Soc., Dalton Trans. 1905Google Scholar
  20. 19.
    Kawanishi S, Yamamoto K and Inoue S 1889Biochem. Pharmacol. 38 3491Google Scholar
  21. 20.
    Singh U S, Scannell R T, An H, Carter B J and Hecht S M 1995J. Am. Chem. Soc. 117 12691CrossRefGoogle Scholar
  22. 21.
    Sigman D S, Graham D R, Aurora D and Stern A M 1979J. Biol. Chem. 254 12269Google Scholar
  23. 22.
    Santra B K, Reddy PAN, Neelakanta G, Mahadevan S, Nethaji M and Chakravarty A R 2002J. Inorg. Biochem. 89 191CrossRefGoogle Scholar
  24. 23.
    Waring M J 1965J. Mol. Biol. 13 269CrossRefGoogle Scholar
  25. 24.
    Le Pecq J-B and Paoletti C 1967J. Mol. Biol. 27 87CrossRefGoogle Scholar
  26. 25(a).
    Changzheng L, Jigui W, Liufong W, Min R, Naiyong J and Jie G 1999J. Inorg. Biochem. 73 195CrossRefGoogle Scholar
  27. 25(b).
    Mahadevan S and Palaniandavar M 1998Inorg. Chem. 37 3927CrossRefGoogle Scholar
  28. 26.
    Thomas A M, Neelakanta G, Mahadevan S, Nethaji M and Chakravarty A R 2002Eur. J. Inorg. Chem. (in press)Google Scholar
  29. 27.
    Veal J M, Merchant K and Rill R L 1991Nucleic Acids Res. 19 3383CrossRefGoogle Scholar
  30. 28.
    Collins J G, Sleeman A D, Aldrich-Wright J R, Greguric I and Hambley T W 1998Inorg. Chem. 37 3133CrossRefGoogle Scholar
  31. 29.
    Fry J V and Collins J G 1997Inorg. Chem. 36 2919CrossRefGoogle Scholar
  32. 30.
    Greguric I, Aldrich-Wright J R and Collins J G 1997J. Am. Chem. Soc. 119 3621CrossRefGoogle Scholar
  33. 31.
    Erkkila K E, Odom D T and Barton J K 1999Chem. Rev. 99 2777CrossRefGoogle Scholar
  34. 32.
    Holmlin R E, Stemp E D A and Barton J K 1998Inorg. Chem. 37 29CrossRefGoogle Scholar
  35. 33.
    Dupureur C M and Barton J K 1997Inorg. Chem. 36 33CrossRefGoogle Scholar
  36. 34.
    Dickenson J E and Summers L A 1970Aust. J. Chem. 23 1023CrossRefGoogle Scholar
  37. 35.
    Amouyal E, Homsi A, Chambron J-C and Sauvage J-P 1990J. Chem. Soc., Dalton Trans. 1841Google Scholar
  38. 36.
    Kishita K, Nakahara A and Kubo M 1964Aust. J. Chem. 17 810CrossRefGoogle Scholar
  39. 37.
    Reichman M E, Rice S A, Thomas C A and Doty P 1954J. Am. Chem. Soc. 76 3047CrossRefGoogle Scholar
  40. 38.
    Bernadou J, Patriviel G, Bennis F, Girardet M and Meunier B 1989Biochemistry 28 7268CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2002

Authors and Affiliations

  • Akhil R Chakravarty
    • 1
  • Pattubala A. N. Anreddy
    • 1
  • Bidyut K. Santra
    • 1
  • Anitha M. Thomas
    • 1
  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations