Journal of Biosciences

, Volume 26, Issue 3, pp 305–313 | Cite as

Is DNA a nonlinear dynamical system where solitary conformational waves are possible?

  • Ludmila V. Yakushevich


DNA is considered as a nonlinear dynamical system in which solitary conformational waves can be excited. The history of the approach, the main results, and arguments in favour and against are presented. Perspectives are discussed pertaining to studies of DNA’s nonlinear properties.


DNA dynamics nonlinear model solitons unwound regions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balanovski E and Beaconsfield P 1985 Solitonlike excitations in biological systems;Phys. Rev. 32 3059–3064CrossRefGoogle Scholar
  2. Barbi M, Cocco S, Peyrard M and Ruffo S 1999 A twist opening model for DNA;J. Biol. Phys. 24 97–114CrossRefGoogle Scholar
  3. Baverstock K F and Cundal R D 1989 Are solitons responsible for energy transfer in oriented DNA?;Int. J. Radiat. Biol. 55 152–153Google Scholar
  4. Bogolubskaya A A and Bogolubsky I L 1994 Two-component localized solutions in a nonlinear DNA model;Phys. Lett. A192 239–246Google Scholar
  5. Campa A and Giansanti A 1999 Melting of DNA oligomers: dynamical models and comparison with experimental results;J. Biol. Phys. 24 141–155CrossRefGoogle Scholar
  6. Crick F H C and Watson J D 1954 The complementary structure of deoxyribonucleic acid;Proc. R. Soc. (London) A223 80–96Google Scholar
  7. Dauxois T, Peyrard M and Willis C R 1992 Localized breatherlike solutions in a discrete Klein-Gordon model and application to DNA;Phys. Rev. D57 267–282Google Scholar
  8. Dauxois T 1991 Dynamics of breathers modes in a nonlinear helicoidal model of DNA;Phys. Lett. A159 390–395Google Scholar
  9. Edwards G S, Davis C C, Saffer J D and Swicord M L 1984 Resonant absorption of selected DNA molecules;Phys. Rev. Lett. 53 1284–1287CrossRefGoogle Scholar
  10. Englander S W, Kallenbach N R, Heeger A J, Krumhansl J A and Litwin A 1980 Nature of the open state in long polynucleotide double helices: possibility of soliton excitations;Proc. Natl. Acad. Sci. USA 77 7222–7226PubMedCrossRefGoogle Scholar
  11. Fedyanin V K, Gochev I and Lisy V 1986 Nonlinear dynamics of bases in continual model of DNA double helices;Stud. Biophys. 116 59–64Google Scholar
  12. Fedyanin V K and Lisy V 1986 Soliton conformational excitations in DNA;Stud. Biophys. 116 65–71Google Scholar
  13. Frank-Kamenetskii M D 1987a How the double helix breathers;Nature (London) 328 17–18CrossRefGoogle Scholar
  14. Fedyanin V K and Yakushevich L V 1984 Scattering of neutrons and light by DNA solitons;Stud. Biophys. 103 171–178Google Scholar
  15. Frank-Kamenetskii M D 1987b Physicists retreat again;Nature (London) 328 108CrossRefGoogle Scholar
  16. Franklin R E and Gosling R G 1953 Molecular structure of nucleic acids. Molecular configuration in sodium thymonucleate;Nature (London) 171 740–741CrossRefGoogle Scholar
  17. Fritzshe H 1982 New structural and dynamic aspects of DNA as revealed by nuclear magnetic resonance;Commun. Mol. Biophys. 1 325–336Google Scholar
  18. Gaeta G 1990 On a model of DNA torsion dynamics.Phys. Lett. A143 227–232Google Scholar
  19. Gaeta G 1992 Solitons in planar and helicoidal Yakushevich model of DNA dynamics;Phys. Lett. A168 383–389Google Scholar
  20. Gaeta G 1999 Results and limitations of the soliton theory of DNA transcription;J. Biol. Phys. 24 81–56CrossRefGoogle Scholar
  21. Gaeta G, Reiss C, Peyrard M and Dauxois T 1994 Simple models of nonlinear DNA dynamics;Rev. Nuovo Cimento 17 1–48CrossRefGoogle Scholar
  22. Gonzalez J A and Martin-Landrove M 1994 Solitons in a nonlinear DNA model;Phys. Lett. A191 409–415Google Scholar
  23. Hai W 1994 Kink couples in deoxyribonucleic acid (DNA) double helices;Phys. Lett. A186 309–316Google Scholar
  24. Homma S 1999 Statistical mechanical theory of DNA denaturation;J. Biol. Phys. 24 115–129CrossRefGoogle Scholar
  25. Homma S and Takeno S 1984 A coupled base-rotator model for structure and dynamics of DNA;Prog. Theor. Phys. 72 679–693CrossRefGoogle Scholar
  26. Keepers J W and James Th L 1982 Models for DNA backbone motions: an interpretation of NMR relaxation experiments;J. Am. Chem. Soc. 104 929–939CrossRefGoogle Scholar
  27. Khan A, Bhaumic D and Dutta-Roy B 1985 The possible role of solitonic process during A to B conformational changes in DNA;Bull. Math. Biol. 47 783–789PubMedGoogle Scholar
  28. Krumhansl J A and Alexander D M 1983 Nonlinear dynamics and conformational excitations in biomolecular materials; inStructure and dynamics: nucleic acids and proteins (eds) E Clementi and R H Sarma (New York: Adenine Press) pp 61–80Google Scholar
  29. Krumhansl J A, Wysin G M, Alexander D M, Garcia A, Lomdahl P S and Layne S P 1985 Further theoretical studies of nonlinear conformational motions in double-helix DNA; inStructure and motion: membranes, nucleic acids and proteins (eds) E Clementi, G Corongiu, M H Sarma and R H Sarma (New York: Adenine Press) pp 407–415Google Scholar
  30. Ladik J J, Suhai S and Seel M 1978 Electronic structure of biopolymers and possible mechanisms of chemical carcinogenesis;Int. J. Quant. Chem. QBS Suppl. 5 35–49Google Scholar
  31. McClure W R 1982 Mechanism and control of transcription in prokaryotes;Annu. Rev. Biochem. 54 171–204CrossRefGoogle Scholar
  32. McCommon J A and Harvey S C 1987Dynamics of proteins and nucleic acids (Cambridge: Cambridge University Press)Google Scholar
  33. Muto V, Holding J, Christiansen P L and Scott AC 1988 Solitons in DNA;J. Biomol. Struct. Dyn. 5 873–894PubMedGoogle Scholar
  34. Muto V, Lomdahl P S and Christiansen P L 1990 Twodimensional discrete model for DNA dynamics: longitudinal wave propagation and denaturation;Phys. Rev. A42 7452–7458Google Scholar
  35. Muto V, Scott A S and Christiansen P L 1989 Thermally generated solitons in a Toda lattice model of DNA;Phys. Lett. A136 33–36Google Scholar
  36. Peyrard M (ed.) 1995Nonlinear excitations in biomolecules (Berlin: Springer)Google Scholar
  37. Peyrard M and Bishop A R 1989 Statistical mechanics of a nonlinear model for DNA denaturation;Phys. Rev. Lett. 62 2755–2758PubMedCrossRefGoogle Scholar
  38. Polozov R V and Yakushevich L V 1988 Nonlinear waves in DNA and regulation of transcription;J. Theor. Biol. 130 423–430PubMedCrossRefGoogle Scholar
  39. Prohofsky E W 1988 Solitons hiding in DNA and their possible significance in RNA transcription;Phys. Rev. A38 1538–1541Google Scholar
  40. Salerno M 1991 Discrete model for DNA-promotor dynamics;Phys. Rev. A44 5292–5297Google Scholar
  41. Scott A C 1985 Solitons in biological molecules;Comments Mol. Cell. Biol. 3 5–57Google Scholar
  42. Selvin P R, Cook D N, Pon N G, Bauer W R, Klein M P and Hearst J E 1992 Torsional rigidity of positively and negatively supercoiled DNA;Science 255 82–85PubMedCrossRefGoogle Scholar
  43. Sobell H M 1984 Kink-antikink bound states in DNA structure; inBiological macromolecules and assemblies (eds) F A Jurnak and A McPherson (New York: John Wiley) pp 172–234Google Scholar
  44. Swicord M L and Davis C C 1982 Microwave absorption of DNA between 8 and 12 GHz;Biopolymers 21 2453–2460PubMedCrossRefGoogle Scholar
  45. Swicord M L and Davis C C 1983 An optical method of investigating the microwave absorption characteristics of DNA and other biomolecules in solution;Bioelectromagnetics 4 21–42PubMedCrossRefGoogle Scholar
  46. Takeno S and Homma S 1983 Topological solitons and modulated structure of bases in DNA double helices;Prog. Theor. Phys. 70 308–311CrossRefGoogle Scholar
  47. Van Zandt L L 1989 DNA soliton realistic parameters;Phys. Rev. A40 6134–6137Google Scholar
  48. Volkov S N 1990 Conformational transition. Dynamics and mechanism of long-range effects in DNA;J. Theor. Biol. 143 485–496PubMedGoogle Scholar
  49. Watson J D and Crick F H C 1953 Molecular structure of nucleic acids. A structure of deoxyribose nucleic acid;Nature (London) 171 737–738CrossRefGoogle Scholar
  50. Webb S J and Booth A D 1969 Absorption of microwave by microorganisms;Nature (London) 222 1199–1200CrossRefGoogle Scholar
  51. Wilkins M H F, Seeds W E, Stokes A R and Wilson H R 1953 Helical structure of crystalline deoxypentose nucleic acid;Nature (London) 172 759–762CrossRefGoogle Scholar
  52. Yakushevich L V 1984 Scattering of neutrons and light by DNA solitons;Stud. Biophys. 103 171–178Google Scholar
  53. Yakushevich L V 1987 The effects of damping, external fields and inhomogeneity on the nonlinear dynamics of biopolymers;Stud. Biophys. 121 201–207Google Scholar
  54. Yakushevich L V 1989a Nonlinear DNA dynamics: a new model;Phys. Lett. A136 413–417Google Scholar
  55. Yakushevich L V 1989b DNA dynamics;Mol. Biol. (Russian J.) 23 652–662Google Scholar
  56. Yakushevich L V 1991 Investigation of a system of nonlinear equations simulating DNA torsional dynamics;Stud. Biophys. 140 163–170Google Scholar
  57. Yakushevich L V 1992 Non-linear DNA dynamics and problems of gene regulationNanobiology 1 343–350Google Scholar
  58. Yakushevich L V 1993 Nonlinear dynamics of biopolymers: theoretical models, experimental data;Q. Rev. Biophys. 26 201–223PubMedCrossRefGoogle Scholar
  59. Yakushevich L V 1995 An exact solution to the system of nonlinear differential equations simulating torsional dynamics of DNA;Russian J. Phys. Chem. 69 1277–1280Google Scholar
  60. Yakushevich L V 1998Nonlinear physics of DNA (New York: Wiley)Google Scholar
  61. Yakushevich L V 1999 Dynamical form-factor of neutron scattering;J. Biol. Phys. 24 131–139CrossRefGoogle Scholar
  62. Yakushevich L V 2000 Nonlinear vector model of the internal DNA dynamics; inMathematical models of non-linear excitations, transfer, dynamics andcontrol in condensed systems and other media (eds) L V Uvarova, A E Arinstein and A V Latyshev (New York: Plenum) pp 93–100Google Scholar
  63. Yakushevich L V and Komarov V M 1998 On the parameters of the nonlinear mathematical equations imitating internal DNA dynamics;Math. Comput. Edu. (in Russian) 5 310–312Google Scholar
  64. Yomosa S 1983 Soliton excitations in deoxyribonucleic acid (DNA) double helices;Phys. Rev. A27 2120–2125Google Scholar
  65. Yomosa S 1984 Solitary excitations in deoxyribonucleic acid (DNA) double helices;Phys. Rev. A30 474–480Google Scholar
  66. Zhang Ch-T 1987 Soliton excitations in deoxyribonucleic acid (DNA) double helices;Phys. Rev. A35 886–891Google Scholar
  67. Zhang Ch-T 1989 Harmonic and subharmonic resonances of microwave absorption in DNA;Phys. Rev. A40 2148–2153Google Scholar
  68. Zhang Z and Olson W 1987 A model of the B-Z transition of DNA involving solitary excitations;Proceedings, 6th annual conference on nonlinearity of condensing matter, Los Alamos, New Maxico, 5–9 May 1986 (eds) A R Bishop, D K Campbell, P Kumar and S E Trullinger (Berlin: Springer) pp 265–270Google Scholar
  69. Zhou G-F and Zhang Ch-T 1991 A short review on the nonlinear motion in DNA;Phys. Scripta 43 347–352CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2001

Authors and Affiliations

  • Ludmila V. Yakushevich
    • 1
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations