Journal of Biosciences

, Volume 26, Issue 2, pp 205–215 | Cite as

Functional magnetic resonance imaging of the primary motor cortex in humans: response to increased functional demands

  • S. Khushu
  • S. S. Kumaran
  • R. P. Tripathi
  • A. Gupta
  • P. C. Jain
  • V. Jain


Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed in six different sessions of a volunteer over a period of one month. Increased tapping rate resulted in increase in the blood oxygenation level dependent (BOLD) signal intensity as well as the volume/area of activation (pixels) in the contra-lateral primary motor area up to tapping rate of 120 taps/min (2 Hz), beyond which it saturates. Activation in supplementary motor area was also observed. The obtained results are correlated to increased functional demands.


Echo-planar imaging finger tapping frequency functional demand functional magnetic resonance imaging primary motor cortex 

Abbreviations used


Blood oxygenation level dependent


cerebral blood flow


functional magnetic resonance imaging


eco-planar imaging


field of view


Magnetic resonance imaging


magnetic resonance spectroscopy


position emission tomography


regional cerebral blood flow


supplementory motor area


signal to noise


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ardekani B A and Kanno I 1998 Statistical methods for detecting activated regions in functional MRI of the brain;Magn. Reson. Imaging 16 1217–1225PubMedCrossRefGoogle Scholar
  2. Belliveau J W, Kennedy D N, McKinstry R C, Buchbinder B R, Weisskoff R M, Cohen M S, Vevea J M, Brady T J and Rosen B R 1991 Functional mapping of the human visual cortex by magnetic resonance imaging;Science 254 716–719PubMedCrossRefGoogle Scholar
  3. Blinkenberg M, Bonde C, Holm S, Svarer C, Andersen J, Paulson O B and Law I 1996 Rate dependecne of regional cerebral activation during performance of a repetitive motor task: A PET study;J. Cereb. Blood Flow Metabol. 16 794–803CrossRefGoogle Scholar
  4. Dettmers C, Fink G R, Lemon R N, Stephan K M, Passingham R E, Silbersweig D, Holmes A, Ridding M C, Brooks D J and Frackowiak R S J 1995 Relation between cerebral activity and force in the motor areas of the human brain;J. Neurophysiol. 74 802–815PubMedGoogle Scholar
  5. Fellner C, Schlaier J, Mueller E and Fellner F 1998 Functional MRI of the motor cortex using a conventional gradient system: Comparison of FLASH and EPI technique;Magn. Reson. Imaging 16 1171–1180PubMedCrossRefGoogle Scholar
  6. Haacke E M, Hopkins A L and Lai S 1994 2D and 3D high-resolution gradient echo functional imaging of the brain: venous contributions to signal in motor cortex studies;NMR Biomed. 7 54–62PubMedCrossRefGoogle Scholar
  7. Haacke E M, Lai S, Yablonskiy D A and Lin W 1995In vivo validation of the BOLD mechanism. A review of signal changes in gradient echo functional MRI in the presence of flow;Int. J. Imag. Sys. Techn. 6 153–163CrossRefGoogle Scholar
  8. Kawashima R, Inoue K, Sugiura M, Okada K, Ogawa A and Fukuda H 1999 A positron emission tomography study of self-paced finger movements at different frequencies;Neuroscience 92 107–112PubMedCrossRefGoogle Scholar
  9. Kim S G, Ugurbil K and Strick P L 1994 Activation of a cerebellar output nucleus during cognitive processing;Science 265 949–951PubMedCrossRefGoogle Scholar
  10. Kleinschmidt A, Nitschke M F and Frahm J 1997 Somatotopy in the human motor cortex hand area. A high resolution MRI study;Eur. J. Neurosci. 9 2178–2186PubMedCrossRefGoogle Scholar
  11. Kwong K K 1995 Functional magnetic resonance imaging with echo planar imaging;Magn. Reson. Q. 11 1–20PubMedGoogle Scholar
  12. Lewine J D 1995 Introduction to functional neuroimaging: functional neuroanatomy, Chapter 2; inFunctional brain imaging (eds) Orisson W W Jr, J D Lewine, J Sanders and M F Hartshorne (St. Louis: Mosby-Yearbook) pp 13–95Google Scholar
  13. Mattay V S and Weinberger D R 1999 Organization of the human motor system as studied by functional magnetic resonance imaging;Eur. J. Radiol. 30 105–114PubMedCrossRefGoogle Scholar
  14. Matsuzaka Y, Aizawa H and Tanji J 1992 A Motor Area Rostral to the Supplementary Motor Area (Presupplementary Motor Area) in the Monkey: Neuronal Activity During a Learned Motor Task;J. Neurophysiol. 68 653–662PubMedGoogle Scholar
  15. Moser E, Teichtmeister C and Diemling M 1996 Reproducibility and postprocessing of Gradient-echo functional MRI to improve localization of brain activity in the human visual cortex;Magn. Reson. Imaging 14 567–579PubMedCrossRefGoogle Scholar
  16. Ogawa S, Tank D W, Menon R, Ellermann M, Kim S G, Merkle H and Ugurbil K 1992 Intrinsic signal changes accompanying sensory stimulation: Functional mapping with Magnetic Resonance Imaging;Proc. Natl. Acad. Sci. USA 89 5951–5955PubMedCrossRefGoogle Scholar
  17. Ogawa S, Menon R S, Tank D W, Kim S G, Merkle H, Ellermann J M and Ugurbil K 1993 Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model;Biophys. J. 64 803–812PubMedCrossRefGoogle Scholar
  18. Passingham R 1993The frontal lobes and voluntary action (Oxford: Oxford University Press)Google Scholar
  19. Porro C A and Corazza R 1999 Functional magnetic resonance imaging as a tool for investigating human cortical motor function;Arch. Ital. Biol. 137 101–114PubMedGoogle Scholar
  20. Rao S M, Binder J R, Bandettini P A, Hammeke T A, Yetkin F Z, Jesmanowicz A, Lisk L M, Morris G L, Mueller W M and Estkowski L D 1993 Functional magnetic resonance imaging of complex human movements;Neurology 43 2311–2318PubMedGoogle Scholar
  21. Rao S M, Bandettini P A, Binder J R, Bobholz T A, Stein E A and Hyde J S 1996 Relationship between finger movement rate and functional Magentic Resonance signal changes in human primary motor cortex;J. Cereb. Blood Flow Metabol. 16 1250–1254CrossRefGoogle Scholar
  22. Sabatini U, Chollet F, Rascol O, Celsis P, Rascol A, Lenzi G L and Marc-Vergnes J P 1993 Effect of side and rate of stimulation on cerebral blood flow changes in motor areas during finger movements in humans;J. Cereb. Blood Flow Metabol. 13 639–645Google Scholar
  23. Sadato N, Ibanez V, Deiber M P, Cambell G, Leonardo M and Hallett M 1996 Frequency dependent changes of regional cerebral blood flow during finger movement;J. Cereb. Blood Flow Metabol. 16 23–33CrossRefGoogle Scholar
  24. Sadato N, Ibanez V, Cambell G, Deiber M P, Le Bihan D and Hallett M 1997 Frequency dependent changes of regional cerebral blood flow during finger movements: functional MRI compared with PET;J. Cereb. Blood Flow Metabol. 17 670–679CrossRefGoogle Scholar
  25. Schlaug G, Sanes J N, Thangaraj V, Darby D G, Jancke L, Edelman R R and Warach S 1996 Cerebral activation covaries with movement rate;NeuroReport 7 879–883PubMedCrossRefGoogle Scholar
  26. Segebarth C, Belle V, Delon C, Massarelli R, Decety J, Le Bas J F, Decorps M and Benabid A L 1994 Functional MRI of the human brain: predominance of signals from extracerebral veins;NeuroReport 5 813–816PubMedCrossRefGoogle Scholar
  27. Stehling M K, Turner R and Mansfield P 1991 Echo-planar imaging: Magnetic resonance imaging in a fraction of a second;Science 254 43–50PubMedCrossRefGoogle Scholar
  28. Turner R, Le Bihan D, Moonen C T W, Despres D and Frank J 1991 Echo-planar time course MRI of cat brain oxygenation changes;Magn. Reson. Med. 22 159–166PubMedCrossRefGoogle Scholar
  29. Wexler B E, Fulbright R K, Lacadie C M, Skudlarski P, Kelz M B, Constable R T and Gore J C 1997 An fMRI study of the human cortical motor system response to increased functional demands;Magn. Reson. Imaging 15 385–396PubMedCrossRefGoogle Scholar
  30. Yetkin F Z, McAuliffe T L, Cox R and Haughton M 1996 Test-Reset precision of functional MR in sensory and motor task;Am. J. Neuroradiol. 17 95–98PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2001

Authors and Affiliations

  • S. Khushu
    • 1
  • S. S. Kumaran
    • 1
  • R. P. Tripathi
    • 1
  • A. Gupta
    • 1
  • P. C. Jain
    • 2
  • V. Jain
    • 3
  1. 1.NMR Research CentreInstitute of Nuclear Medicine and Allied SciencesDelhiIndia
  2. 2.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia
  3. 3.BR Ambedkar Centre for Biomedical ResearchUniversity of DelhiDelhiIndia

Personalised recommendations