, Volume 25, Issue 6, pp 619–630 | Cite as

Decentralised stabilising controllers for a class of large-scale linear systems

  • B. C. Jha
  • K. Patralekh
  • R. Singh


A simple method for computing decentralised stabilising controllers for a class of large-scale (interconnected) linear systems has been developed. Decentralised controls are optimal controls at subsystem level and are generated from the solution of algebraic Riccati equations for decoupled subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order


Decentralised stabilisation large-scale linear systems optimal feedback control algebraic Riccati equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Kuo B C 1993Automatic control systems P H I 6th edn, pp 222–225Google Scholar
  2. Mahalanabis A K, Singh R 1980 On decentralised feedback stabilisation of large-scale interconnected systems.Int. J. Control 32: 115–126MATHCrossRefMathSciNetGoogle Scholar
  3. Siljak D D, Vukcevic M B 1977 Decentrally stabilizable linear and bilinear large-scale systems.Int. J. Control 26: 289–305CrossRefMathSciNetGoogle Scholar
  4. Singh R 1970 Optimal feedback control of linear time-invariant system with quadratic criterion.Inst. Eng. (India). Electron. Telecommun. Div. 51: 52–55Google Scholar
  5. Wang S H, Davison E J 1973 On the stabilisation of decentralised control systems.IEEE Trans. Autom. Control AC-18: 473–478CrossRefMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2000

Authors and Affiliations

  • B. C. Jha
    • 1
  • K. Patralekh
    • 2
  • R. Singh
    • 2
  1. 1.University Science Instrumentation CentreT M Bhagalpur UniversityBhagalpurIndia
  2. 2.Department of Electrical EngineeringBhagalpur College of EngineeringBhagalpurIndia

Personalised recommendations