, Volume 30, Issue 4, pp 513–525 | Cite as

Viscous effect at an orthotropic micropolar boundary surface

  • Rajneesh Kumar
  • Praveen Ailawalia


Steady state responses at viscous fluid/ orthotropic micropolar solid interfaces to moving point loads have been studied. An eigenvalue approach using the Fourier transform has been employed to solve the problem. The displacement, microrotation and stress components for the orthotropic micropolar solids so obtained in the physical domain are computed numerically by applying numerical inversion technique. Viscosity and anisotropy effects on normal displacement, normal force stress and tangential couple stress have been shown graphically for a particular model. Some special cases of interest have been presented.


Steady state viscous fluid micropolar orthotropic Fourier transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Das S, Patra B, Debnath L 2000 Stress intensity factors around two co-planar Griffith cracks in an orthotropic layer sandwiched between two identical orthotropic half-planes.Int. J. Eng. Sci. 38: 121–133CrossRefGoogle Scholar
  2. Eringen A C 1966a Linear theory of micropolar elasticity.J. Math. Mech. 15: 909–923MATHMathSciNetGoogle Scholar
  3. Eringen A C 1966b Theory of micropolar fluids.J. Math. Mech. 16: 1–18MathSciNetGoogle Scholar
  4. Eringen A C 1968Theory of micropolar elasticity in fracture (New York: Academic Press) vol. 2, pp 621–729Google Scholar
  5. Every A G, Kim K Y 1994 Time domain dynamic response functions of elastically anisotropic solids.J. Acous. Soc. Am. 95: 2505–2516CrossRefMathSciNetGoogle Scholar
  6. Fehler M 1982 Interactions of seismic waves with a viscous liquid layer.Bull. Seism. Soc. Am. 72: 55–72Google Scholar
  7. Fung Y C 1968Foundations of solid mechanics (New Delhi: Prentice Hall)Google Scholar
  8. Gauthier R D 1982 Experimental investigations on micropolar media. InMechanics of micropolar media (eds) O Brulin, R K T Hsieh (Singapore: World Scientific)Google Scholar
  9. Garg N R, Sharma R K 1991a Displacements and stresses at any point of a transversly isotropic multilayered half-space due to strip loading.Indian J. Pure Appl. Math. 22: 859–877MATHMathSciNetGoogle Scholar
  10. Garg N R, Sharma R K 1991b Two-dimensional deformation of a vertically inhomogeneous orthotropic multilayered medium due to general surface loads.Indian J. Pure Appl. Math. 22: 1035–1050MATHMathSciNetGoogle Scholar
  11. Iesan D 1973 The plane micropolar strain of orthotropic elastic solids.Arch. Mech. 25: 547–561MATHMathSciNetGoogle Scholar
  12. Iesan D 1974a Torsion of anisotropic elastic cylinders.Z. Angew. Math. Mech. 54: 773–779CrossRefMATHGoogle Scholar
  13. Iesan D 1974b Bending of orthotropic micropolar elastic beams by terminal couples.An. Stiint. Uni. AI. I. Cuza. Iasi 20: 411–418MATHMathSciNetGoogle Scholar
  14. Kumar R, Ailawalia P 2003 Moving load response at thermal conducting fluid and micropolar solid interface.Int. J. Appl. Mech. Eng. 8: 621–636MATHGoogle Scholar
  15. Kumar R, Choudhary S 2002a Influence of Green’s function for orthotropic micropolar continua.Arch. Mech. 54: 185–198MATHGoogle Scholar
  16. Kumar R, Choudhary S 2002b Dynamical behavior of orthotropic micropolar elastic medium.J. Vibr. Contr. 8: 1053–1069MATHGoogle Scholar
  17. Kumar R, Choudhary S 2002c Mechanical sources in orthotropic micropolar continua.Proc. Indian Acad. Sci. (Earth Plant. Sci.) 111: 133–141Google Scholar
  18. Kumar R, Choudhary S 2003 Response of orthotropic microploar elastic medium due to various sources.Meccanica 38: 349–368MATHCrossRefGoogle Scholar
  19. Kumar R, Choudhary S 2004 Response of orthotropic micropolar elastic medium due to time harmonic sources.Sādhanā 29: 83–92MATHGoogle Scholar
  20. Kumar R, Deswal S 2000 Steady state response of a micropolar generalized thermoelastic half space to the moving mechanical/thermal loads.Proc. Indian Acad. Sci. (Math. Sci.) 110: 449–465MATHCrossRefMathSciNetGoogle Scholar
  21. Kumar R, Deswal S 2002 Steady state response to moving loads in a micropolar generalized thermoelastic half space without energy dissipation.Ganita 53: 23–42MATHGoogle Scholar
  22. Kumar R, Gogna M L 1992 Steady state response to moving loads in micropolar elastic medium with stretch.Int. J. Eng. Sci. 30: 811–820MATHCrossRefGoogle Scholar
  23. Nakamura S, Benedict R, Lakes R 1984 Finite element method for orthotropic micropolar elasticity.Int. J. Eng. Sci. 22: 319–330MATHCrossRefGoogle Scholar
  24. Obrezanova O A, Rabinovich V S 1996 Wave propagation from moving sources in the ocean.Proc. 3rd ECCOMAS. Comput. Fluid Dynamics Conf. Paris, pp 754–759Google Scholar
  25. Obrezanova O A, Rabinovich V S 1998 Acoustic field generated by moving sources in stratified wave guides.Wave Motion 27: 155–167MATHCrossRefMathSciNetGoogle Scholar
  26. Pan E 2003a Three-dimensional Green’s function in an anisotropic half-space with general boundary conditions.J. Appl. Mech., Trans. ASME. 70: 101–110MATHGoogle Scholar
  27. Pan E 2003b Three-dimensional Green’s function in an anisotropic elastic bimaterials with imperfect interfaces.J. Appl. Mech., Trans. ASME. 70: 180–190MATHGoogle Scholar
  28. Press W H, Teukolsky S A, Vellerling W T, Flannery B P 1986Numerical recipes (Cambridge: University Press)Google Scholar
  29. Rubio-Gonzalez C, Mason J J 1999 Response of finite cracks in orthotropic materials due to concentrated impact shear loads.J. Appl. Mech. Trans. ASME. 66: 485–491CrossRefGoogle Scholar
  30. White F M 1994Fluid mechanics (New York: McGraw Hill)Google Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Rajneesh Kumar
    • 1
  • Praveen Ailawalia
    • 2
  1. 1.Department of MathematicsKurukshetra UniversityKurukshetraIndia
  2. 2.Department of Applied SciencesIEETDistt.SolanIndia

Personalised recommendations