Journal of Biosciences

, Volume 2, Issue 3, pp 227–233 | Cite as

Spectroscopic studies on the denaturation of papain solubilized and Triton X-100-solubilized glucoamylase from rabbit small intestine

  • S. Sivakami
  • D. Chatterji


Intestinal brush border proteins consist of an enzymatically active hydrophilic moiety attached to a hydrophobic tail. Papain dissociates the hydrophilic part by cleaving off the hydrophobic tail, whereas the detergentTriton X-100 solubilizes the whole molecule. Denaturation by 8 M urea or 4 M guanidinium chloride does not alter the structure of the papain-solubilized enzyme. An appreciable alteration of the structure of detergent-solubilized enzyme was observed on denaturation. The difference spectra of Triton X-100 (1%)—solubilized enzyme and its urea denatured form shifts and intensifies, with increase in the concentration of the denaturant with an isobestic point at 252 nm. A new band at 280 nm also appears at 4 M urea concentration. Papain-solubilized glucoamylase has an ∞ -helical conformation in solution unlike the detergentsolubilized fraction. An elongated structure for the papain solubilized enzyme is inferred from the urea denaturation studies and from molecular weight determinations.


Rabbit small intestine glucoamylase papain denaturation Triton X-100 difference spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Colbeau, A. and Maroux, S. (1978)Biochim. Biophys. Acta,511, 39.PubMedCrossRefGoogle Scholar
  2. Dahlqvist, A. (1964)Anal Biochem.,7, 18.PubMedCrossRefGoogle Scholar
  3. Greenfield, N. and Fasman, G. D., (1969)Biochemistry,8, 4108.PubMedCrossRefGoogle Scholar
  4. Helenius, A. and Simons, K. (1975)Biochim. Biophys. Acta,415, 29.PubMedGoogle Scholar
  5. Herskovits, T. T. (1967)Methods Enzymol.,11, 748.CrossRefGoogle Scholar
  6. Kelly, J. J. and Alpers, D. H. (1973)Biochim. Biophys. Acta,315, 113.PubMedGoogle Scholar
  7. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951)J. Biol. Chem.,193, 265.PubMedGoogle Scholar
  8. Maroux, S. and Louvard, D. (1976)Biochim. Biophys. Acta,419, 189.PubMedCrossRefGoogle Scholar
  9. Nirmala Murthy, T. (1978)Studies on Triton X-100 solubilized glucoamylase from rabbit small intestine, M. Phil Dissertation, University of Hyderabad, Hyderabad.Google Scholar
  10. Schlegel-Haueter, S., Hore, P., Kerry, K. R.and Semenza, G. (1972)Biochem. Biophys. Acta,258, 506.PubMedGoogle Scholar
  11. Seetharam, B., Swaminathan, N. and Radhakrishnan, A. N. (1970)Biochem. J.,117, 939.PubMedGoogle Scholar
  12. Sigrist, H., Ronner, P. and Semenza, G. (1975)Biochim. Biophys. Acta,406, 433.PubMedCrossRefGoogle Scholar
  13. Simons, K., Helenius, A. and Garoft, H. (1973)J. Mol Biol.,80, 119.PubMedCrossRefGoogle Scholar
  14. Sivakami, S. and Radhakrishnan, A. N. (1973)Indian J. Biochem. Biophys.,10, 283.PubMedGoogle Scholar
  15. Sivakami, S. and Radhakrishnan, A. N. (1978)Indian J. Biochem. Biophys.,15, 354.PubMedGoogle Scholar
  16. Tanford, C., Nozaki, Y., Reynolds, J. A., and Makino, S. (1974)Biochemistry,13, 2369.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1980

Authors and Affiliations

  • S. Sivakami
    • 1
  • D. Chatterji
    • 1
  1. 1.School of Life SciencesUniversity of HyderabadHyderabad

Personalised recommendations