Journal of Biosciences

, Volume 14, Issue 2, pp 153–162 | Cite as

Qualitative and quantitative variation of tRNA in certain invertebrates

  • P. Sivaram
  • R. Mayasundari


Total tRNA was isolated, purified and quantitated from earthworm, cockroach, fresh water mussel and rat liver. The total tRNA content of invertebrates was found to be much lower than that of rat liver. When checked for aminoacylation capacity with homologous and heterologous enzymes and algal protein hydrolysate, the tRNA preparation from rat liver and fresh water mussel, a mollusc, were found to be active. On the other hand, the tRNAs from earthworm, an annelid, and cockroach, an arthropod, were completely inactive with the homologous enzymes but showed partial activity with heterologous enzymes. Similar results were obtained with individual amino acids also. The low activity or inactivity of earthworm and cockroach tRNAs appears to be due to certain endogenous aminoacylation inhibitors.


Transfer RNA aminoacyl-tRNA synthetase aminoacylation earthworm cockroach fresh water mussel 

Abbreviations used


Borine serum albumin




trichloroacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chuang, R. Y. and Doi, R. H (1972)J. Biol. Chem.,247, 3476.PubMedGoogle Scholar
  2. Deutscher, M. P. (1981) inRNA and protein synthesis (ed. K. Moldave) (New York: Academic Press) p. 249.Google Scholar
  3. Dure, L. S. (1973) inMolecular techniques and approaches in developmental biology (ed. M. J. Chrispeels) (New York: Willey Interscience) p. 199.Google Scholar
  4. Eigen, M. and Winkler, R. (1981)Naturwissenschaften,68, 217.PubMedCrossRefGoogle Scholar
  5. Heyman, T., Leidner, J. and Menichi-Desseaux, B. (1973)Biochimie,55, 127.PubMedCrossRefGoogle Scholar
  6. Holmquist, R., Jukes, T. H. and Pangburn, S. (1973)J. Mol. Biol.,78, 91.PubMedCrossRefGoogle Scholar
  7. Kano-Sueoka, T. and Sueoka, N. (1968)J. Mol. Biol.,37, 475.PubMedCrossRefGoogle Scholar
  8. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randal, R. J. (1951)J. Biol. Chem.,193, 265.PubMedGoogle Scholar
  9. Manjula and Mayasundari, R. (1980)J. Biosci.,2, 243.Google Scholar
  10. Manjula and Mayasundari, R. (1981)Indian J. Biochem. Biophys.,18, 192.PubMedGoogle Scholar
  11. Mans, R. J. and Novelli, G. D. (1961)Arch. Biochem. Biophys.,94, 48.CrossRefGoogle Scholar
  12. Mayasundari, R., Cherayil, J. D. and Jacob, T. M. (1974)Indian J. Biochem. Biophys.,11, 43.Google Scholar
  13. Mays, L. L., Lawrence, A. E. and Rose, W. (1978)Fed. Proc. Am. Soc. Exp. Biol.,37, 454.Google Scholar
  14. Murphy, L. T. and Cooper, I. A. (1982)Cancer Res.,42, 3887.PubMedGoogle Scholar
  15. Natale, P. D. and Eilat, D. (1976)Nucleic Acids Res.,3, 917.PubMedGoogle Scholar
  16. Rich, A. and Schimmel, P. R. (1977)Ace. Chem. Res.,10, 385.CrossRefGoogle Scholar
  17. Rodriguez-Vargas, A. M., Fajardo, J. E. and Ramirez, B. C. (1984)Origins Life,14, 547.CrossRefGoogle Scholar
  18. Schneider, W. C. (1957)Methods Enzymol.,3, 680.CrossRefGoogle Scholar
  19. Soil, D. and Schimmel, P. (1974)Enzymes,10, 489.Google Scholar
  20. Sprinzl, M., Moll, J., Meissner, F. and Hartman, T. (1985)Nucleic Acids Res., (Suppl), rlGoogle Scholar
  21. Strehler, B. L., Hirsch, G., Gusseck, D., Johnson, R. and Bick, M. (1971)J. Theor. Biol,33, 429.PubMedCrossRefGoogle Scholar
  22. Taylor, M. W., Granger, G. A., Buck, C. A. and Holland, J. J. (1967)Proc. Natl. Acad Sci. USA,57, 1712.PubMedCrossRefGoogle Scholar
  23. Yang, S. S. and Comb, D. G. (1968)J. Mol. Biol.,31, 139.CrossRefGoogle Scholar
  24. Yang, W. K. and Novelli, G. D. (1971)Methods Enzymol.,20, 45.Google Scholar
  25. Zeikus, J. G., Taylor, M. W. and Buck, C. A.(1967)Exp. Cell. Res.,57, 74.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1989

Authors and Affiliations

  • P. Sivaram
    • 1
  • R. Mayasundari
    • 1
  1. 1.Department of GeneticsPost-Graduate Institute of Basic Medical SciencesMadrasIndia

Personalised recommendations