Advertisement

Journal of Biosciences

, Volume 21, Issue 3, pp 369–378 | Cite as

Molecular and genetic analyses of flower homeotic genes ofArabidopsis

  • Koji Goto
Article

Abstract

Recent genetic and molecular analyses usingArabidopsis has revealed basic mechanisms of floral pattern formation. Here is outlined a genetic model of flower morphogenesis. This shows that combinations of floral organ identity genes direct the organ type and the place in the flower bud. After molecular cloning of these genes, the hypothesis is supported at the molecular level. Molecular analyses of homologous genes from other plants show the same system of flower morphogenesis is shared widely among distantly related species.

Keywords

Genetic model flower morphogenesis Arabidopsis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alejandra M and Yanofsky M F 1995 A gene triggering flower formation in Arabidopsis;Nature (London) 377 522–524CrossRefGoogle Scholar
  2. Angenent G C, Busscher M, Franken J, Mol J N M and van Tunen A J 1992 Differential expression of two MADS box genes in wild-type and mutant Petunia flowers;Plant Cell 4 983–993PubMedCrossRefGoogle Scholar
  3. Angenent G C, Franken J, Busscher M, Weiss D and van Tunen A J 1993 Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem;Plant J. 4 101–112PubMedCrossRefGoogle Scholar
  4. Bowman J L, Smyth D R and Meyerowitz E M 1989 Genes directing flower development inArabidopsis;Plant Cell 1 37–52PubMedCrossRefGoogle Scholar
  5. Bowman J L, Smyth D R and Meyerowitz E M 1991 Genetic interactions among floral homeotic genes ofArabidopsis;Development 112 1–20PubMedGoogle Scholar
  6. Carpenter R and Coen E C 1990 Floral homeotic mutations produced by transposon-mutagenesis inAntirrhinum majus;Genes Dev. 4 1483–1493PubMedCrossRefGoogle Scholar
  7. Coen E S and Meyerowitz E M 1991 The war of the whorls: genetic interactions controlling flower development;Nature (London) 353 31–37CrossRefGoogle Scholar
  8. Drews G N, Bowman J L and Meyerowitz E M 1991 Negative regulation of the Arabidopsis homeotic gene by the apetala2 product;Cell 65 991–1002PubMedCrossRefGoogle Scholar
  9. Goto K and Meyerowitz E M 1994 Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA;Genes Dev. 8 1548–1560PubMedCrossRefGoogle Scholar
  10. Gustafson-Brown C, Savidge B and Yanofsky M F 1994 Regulation of the Arabidopsis floral homeotic gene APETALA1;Cell 76 131–143PubMedCrossRefGoogle Scholar
  11. Jack T, Brockman L L and Meyerowitz E M 1992 The homeotic geneAPETALA3 ofArabidopsis thaliana encodes a MADS box and is expressed in petals and stamens;Cell 68 683–697PubMedCrossRefGoogle Scholar
  12. Jack T, Fox G L and Meyerowitz E M 1994 Arabidopsis homeotic geneAPETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity;Cell 76 703–716PubMedCrossRefGoogle Scholar
  13. Jofuku K D, den Boer B G W, Van Montagu M and Okamuro J K 1994 Control of Arabidopsis flower and seed development by the homeotic gene APETALA2;Plant Cell 6 1211–1225PubMedCrossRefGoogle Scholar
  14. Kempin S A, Mandel M A and Yanofsky M F 1993 Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG 1;Plant Physiol. 103 1041–1046PubMedCrossRefGoogle Scholar
  15. Levin J Z and Meyerowitz E M 1995UFO: An Arabidopsis gene involved in both floral meristem and floral organ development;Plant Cell 7 529–548PubMedCrossRefGoogle Scholar
  16. Ma H 1994 The infolding drama of flower development: recent results from genetic and molecular analyses;Genes Dev. 8 745–756PubMedCrossRefGoogle Scholar
  17. Mandel M A, Gustafson-Brown C, Savidge B and Yanofsky M F 1992 Molecular characterization of theArabidopsis floral homeotic geneAPETALA1;Nature (London) 360 273–277CrossRefGoogle Scholar
  18. Mizukami Y and Ma H 1992 Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity;Cell 71 119–131PubMedCrossRefGoogle Scholar
  19. Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z and Lifschitz E 1991 The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structure and homology with homeotic genes from Antirrhinum and Arabidopsis;Plant J. 1 255–266PubMedCrossRefGoogle Scholar
  20. Schmidt R J, Veit M A, Mandel M A, Mena M, Hake S and Yanofsky M F 1993 Identification and molecular characterization of ZAG1, the maize homologue of theArabidopsis floral homeotic gene, AGAMOUS;Plant Cell 5 729–737PubMedCrossRefGoogle Scholar
  21. Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H and Sommer H 1990 Genetic control of flower development: homeotic genes inAntirrhinum majus;Science 250 931–936PubMedCrossRefGoogle Scholar
  22. van der Krol A R, Brunelle A, Tsuchimoto S and Chua N -H 1993 Functional analysis of petunia floral homeotic MADS box gene p MAD Sl;Genes Dev. 7 1214–1228PubMedCrossRefGoogle Scholar
  23. Weigel D and Meyerowitz E M 1993 Activation of floral homeotic genes inArabidopsis;Science 261 1723–1726PubMedCrossRefGoogle Scholar
  24. Weigel D and Meyerowitz E M 1994 The ABCs of Floral Homeotic Genes;Cell 78 203–209PubMedCrossRefGoogle Scholar
  25. Weigel D and Nilsson O 1995 A developmental switch sufficient for flower initiation in diverse plants;Nature (London) 377, 495–500CrossRefGoogle Scholar
  26. Yanofsky M F, Ma H, Bowman J B, Drew G N, Feldmann K A and Meyerowitz E M 1990 The protein encoded by theArabidopsis homeotic geneagamous resembles transcription factors;Nature (London) 346 35–39CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1996

Authors and Affiliations

  • Koji Goto
    • 1
  1. 1.Institute for Chemical ResearchKyoto UniversityKyotoJapan

Personalised recommendations